
With Microscope and Tweezers:
An Analysis of the Internet Virus of November 1988�

Mark W. Eichin and Jon A. Rochlis

Massachusetts Institute of Technology
77 Massachusetts Avenue, E40-311

Cambridge, MA 02139

February 9, 1989

Abstract

In early November 1988 the Internet, a collection of net-
works consisting of 60,000 host computers implementing
the TCP/IP protocol suite, was attacked by a virus, a pro-
gram which broke into computers on the network and which
spread from one machine to another. This paper is a de-
tailed analysis of the virus programitself, as well as the re-
actions of the besieged Internet community. We discuss the
structure of the actual program, as well as the strategies the
virus used to reproduce itself. We present the chronology
of events as seen by our team at MIT, one of a handful of
groups around the country working to take apart the virus,
in an attempt to discover its secrets and to learn the net-
work’s vulnerabilities. We describe the lessons that this
incident has taught the Internet community and topics for
future consideration and resolution. A detailed routine by
routine description of the virus program including the con-
tents of its built in dictionary is provided.

1 Introduction

The Internet[1][2], a collection of interconnected networks
linking approximately 60,000 computers, was attacked by a
virus program on 2 November 1988. The Internet commu-
nity is comprised of academic, corporate, and goverment
research users, all seeking to exchange information to en-
hance their research efforts.

The virus broke into Berkeley Standard Distribution
(BSD) UNIX1 and derivative systems. Once resident in a

�Copyright c 1988 Massachusetts Institute of Technology. A version
of this paper will be presented at the 1989 IEEE Symposium on Research
in Security and Privacy.

1UNIX is a trademark of AT&T. DEC, VAX, and Ultrix are trademarks
of Digitial Equipment Corporation. Sun, SunOS, and NFS are trademarks
of Sun Microsystems, Inc. IBM is a trademark of International Business
Machines, Inc.

computer, it attempted to break into other machines on the
network. This paper is an analysis of that virus program
and of the reaction of the Internet community to the attack.

1.1 Organization

In Section 1 we discuss the categorization of the program
which attacked the Internet, the goals of the teams work-
ing on isolating the virus and the methods they employed,
and summarize what the virus did and did not actually do.
In Section 2 we discuss in more detail the strategies it em-
ployed, the specific attacks it used, and the effective and
ineffective defenses proposed by the community. Section
3 is a detailed presentation of the chronology of the virus.
It describes how our group at MIT found out and reacted
to the crisis, and relate the experiences and actions of se-
lect other groups throughout the country, especially as they
interacted with our group. Once the crisis had passed, the
Internet community had time not only to explore the vulner-
abilities which had allowed the attack to succeed, but also
to consider how future attacks could be prevented. Section
4 presents our views on the lessons learned and problems
to be faced in the future. In Section 5 we acknowledge the
people on our team and the people at other sites who aided
us in the effort to understand the virus.

We present a subroutine by subroutine description of the
virus program itself in Appendix A, including a diagram
of the information flow through the routines which com-
prise the ‘‘cracking engine’’. Appendix B contains a list of
the words included in the built-in dictionary carried by the
virus. Finally in Appendix C we provide an alphabetized
list of all the people mentioned in this paper, their affilia-
tions, and their network mail addresses.

1.2 A Rose by Any Other Name

The question of how to classify the program which infected
the Internet has received a fair amount of attention. Was it
a ‘‘virus’’ or ‘‘worm’’; or was it something else?

There is confusion about the term ‘‘virus.’’ To a biolo-
gist a virus is an agent of infection which can only grow and
reproduce within a host cell. A lytic virus enters a cell and
uses the cell’s own metabolic machinery to replicate. The
newly created viruses (more appropriately called ‘‘virons’’)
break out of the infected cell, destroying it, and then seek
out new cells to infect. A lysogenetic virus, on the other
hand, alters the genetic material of its host cells. When
the host cell reproduces it unwittingly reproduces the vi-
ral genes. At some point in the future, the viral genes are
activated and many virons are produced by the cell. These
proceed to break out of the cell and seek out other cells to
infect[3]. Some single strand DNA viruses do not kill the
host cell; they use the machinery of the host cell to repro-
duce (perhaps slowing normal celluar growth by diverting
resources) and exit the cells in a non-destructive manner[4].

A ‘‘worm’’ is an organism with an elongated segmented
body. Because of the shape of their bodies worms can
snake around obstacles and work their way into unexpected
places. Some worms, for example the tapeworm, are para-
sites. They live inside of a host organism, feeding directly
from nutrients intended for host cells. These worms re-
produce by shedding one of their segments which contains
many eggs. They have difficulty in reaching new hosts,
since they usually leave an infected host through its excre-
tory system and may not readily come into contact with an-
other host[5].

In deciding which term fits the program which infected
the Internet, we must decide which part of the system is
analogous to the ‘‘host’’. Possibilities include the network,
host computers, programs, and processes. We must also
consider the actions of the program and its structure.

Viewing the network layer as the ‘‘host’’ is not fruitful;
the network was not attacked, specific hosts on the network
were. The infection never spread beyond the Internet even
though there were gateways to other types of networks.
One could view the infection as a worm, which ‘‘wiggled’’
throughout the network. But as Beckman points out[6] the
program didn’t have connected ‘‘segments’’ in any sense.
Thus it can’t be a worm.

A model showing the computers as the ‘‘host’’ is more
promising. The infection of 2 November entered the hosts,
reproduced, and exited in search of new hosts to infect.
Some people might argue that since the host was not de-
stroyed in this process, that the infecting program was more
like a worm than a virus. But, as mentioned earlier, not all
viruses destroy their host cells. Denning [7] defines a com-
puter worm as a program which enters a workstation and
disables it. In that sense the infection could be considered a

worm, but we reject this definition. The infected computers
were affected but not all were ‘‘disabled’’. There is also no
analog to the segments of a biological worm.

Denning has described how many personal computer
programs have been infected by viral programs[7]. These
are frequently analogous to lysogenetic viruses because
they modify the actual program code as stored in the com-
puter’s secondary storage. As the infected programs are
copied from computer to computer through normal soft-
ware distribution, the viral code is also copied. At some
point the viral code may activate and perform some action
such as deleting files or displaying a message. Applying
this definition of a virus while viewing programs as ‘‘hosts’’
does not work for the Internet infection, since the virus nei-
ther attacked nor modified programs in any way.

If, however, processes are view as ‘‘hosts’’, then the In-
ternet infection can clearly be considered a viral infection.
The virus entered hosts through a daemon process, tricking
that process into creating a viral process, which would then
attempt to reproduce. In only one case, the finger attack,
was the daemon process actually changed; but as we noted
above only lysogenetic viruses actually change their host’s
genetic material.

Denning defines a bacterium as a program which repli-
cates itself and feeds off the host’s computational resources.
While this seems to describe the program which infected
the Internet, it is an awkward and vague description which
doesn’t seem to convey the nature of the infection at all.

Thus we have chosen to call the program which infected
the Internet a virus. We feel it is accurate and descriptive.

1.3 Goals and Targets

The program that attacked many Internet hosts was itself
attacked by teams of programmers around the country. The
goal of these teams was to find outall the inner workings of
the virus. This included not just understanding how to stop
further attacks, but also understanding whether any perma-
nent damage had been done, including destruction or alter-
ation of data during the actual infection, or possible ‘‘time
bombs’’ left for later execution.

There were several steps in achieving these goals: in-
cluding
� isolating a specimen of the virus in a form which could

be analyzed.
� ‘‘decompiling’’ the virus, into a form that could be

shown to reduce to the executable of the real thing,
so that the higher level version could be interpreted.

� analyzing the strategies used by the virus, and the el-
ements of its design, in order to find weaknesses and
methods of defeating it.

The first two steps were completed by the morning of
4 November 1988. Enough of the third was complete to

2

determine that the virus was harmless, but there were no
clues to the higher level issues, such as the reason for the
virus’ rapid spread.

Once the decompiled code existed, and the threat of the
virus known to be minimal, it was clear to the MIT team
and those at Berkeley that the code should be protected.
We understood that the knowledge required to write such
a program could not be kept secret, but felt that if the code
were publicly available, someone could too easily modify
it and release a damaging mutated strain. If this occurred
before many hosts had removed the bugs which allowed the
penetration in the first place, much damage would be done.

There was also a clear need to explain to the community
what the virus was and how it worked. This information, in
the form of this report, can actually bemoreuseful to inter-
ested people than the source code could be, since it includes
discussion of the side effects and results of the code, as well
as flaws in it, rather than merely listing the code line by line.
Conversely, there are people interested in the intricate detail
of how and why certain routines were used; there should be
enough detail here to satisfy them as well. Readers will also
find Seely[8] and Spafford’s[9] papers interesting.

1.4 Major Points

This section provides an outline of the how the virus at-
tacked and who it attacked. It also lists several things the
virus did not do, but which many people seem to have at-
tributed to the virus. All of the following points are de-
scribed in more detail in Section 2.

1.4.1 How it entered

� sendmail (needed debug mode, as in SunOS binary re-
leases)

� finger[10] (only VAX hosts were victims)
� remote execution system, using

� rexec
� rsh

1.4.2 Who it attacked

� accounts with obvious passwords, such as
� none at all
� the user name
� the user name appended to itself
� the ‘‘nickname’’
� the last name
� the last name spelled backwards

� accounts with passwords in a 432 word dictionary (see
Appendix B)

� accounts with passwords in/usr/dict/words
� accounts which trusted other machines via the

.rhosts mechanism

1.4.3 What it attacked

� SUNs and VAXes only
� machines in/etc/hosts.equiv
� machines in/.rhosts
� machines in cracked accounts’.forward files
� machines in cracked accounts’.rhosts files
� machines listed as network gateways in routing tables
� machines at the far end of point-to-point interfaces
� possibly machines at randomly guessed addresses on

networks of first hop gateways

1.4.4 What it did NOT do

� gain privileged access (it almost never broke in as
root)

� destroy or attempt to destroy any data
� leave time bombs behind
� differentiate among networks (such as MILNET,

ARPANET)
� use UUCP at all
� attack specific well-knownor privileged accounts such

asroot

2 Strategies

2.1 Attacks

This virus attacked several things, directly and indirectly. It
picked out some deliberate targets, such as specific network
daemons through which to infect the remote host. There
were also less direct targets, such as mail service and the
flow of information about the virus.

2.1.1 Sendmail Debug Mode

The virus exploited the ‘‘debug’’ function ofsendmail ,
which enables debugging mode for the duration of the cur-
rent connection. Debugging mode has many features, in-
cluding the ability to send a mail message with a program
as the recipient (i.e. the program would run, with all of its
input coming from the body of the message). This is inap-
propriate and rumor[11] has it that the author included this
feature to allow him to circumvent security on a machine
he was using for testing. It certainly exceeds the intended
design of the Simple Mail Transfer Protocol (SMTP) [12].

Specification of a program to execute when mail is re-
ceived is normally allowed in thesendmail aliases file
or users’.forward files directly, forvacation 2, mail
archive programs, and personal mail sorters. It isnot nor-
mally allowed for incoming connections. In the virus, the

2A program which accepts incoming mail and sends back mail to the
original sender, usually saying something like ‘‘I am on vacation, and will
not read your mail until I return.’’

3

‘‘recipient’’ was a command to strip off the mail headers
and pass the remainder of the message to a command in-
terpreter. The body was a script that created a C program,
the ‘‘grappling hook,’’ which transfered the rest of the mod-
ules from the originiating host, and the commands to link
and execute them. Both VAX and Sun binaries were trans-
fered and both would be tried in turn, no attempt to deter-
mine the machine type was made. On other architectures
the programs would not run, but would use resources in the
linking process. All other attacks used the same ‘‘grappling
hook’’ mechanism, but used other flaws to inject the ‘‘grap-
pling hook’’ into the target machine.

The fact that debug was enabled by default was reported
to Berkeley by several sources during the 4.2BSD release.
The 4.3BSD release as well as Sun releases still had this
option enabled by default [13]. The then current release of
Ultrix did not have debug mode enabled, but the beta test
version of the newest release did have debug enabled (it
was disabled before finally being shipped). MIT’s Project
Athena was among a number of sites which went out of
its way to disable debug mode; however, it is unlikely that
many binary-only sites were able to be as diligent.

2.1.2 Finger Daemon Bug

The virus hit the finger daemon (fingerd) by overflow-
ing a buffer which was allocated on the stack. The over-
flow was possible becausefingerd used a library func-
tion which did not do range checking. Since the buffer was
on the stack, the overflow allowed a fake stack frame to
be created, which caused a small piece of code to be exe-
cuted when the procedure returned3. The library function
in question turns out to be a backward-compatibility rou-
tine, which should not have been needed after 1979 [14].

Only 4.3BSD VAX machines were attacked this way.
The virus did not attempt a Sun specific attack on finger
and its VAX attack failed when invoked on a Sun target.
Ultrix was not vulnerable to this since production releases
did not include afingerd .

2.1.3 Rexec and Passwords

The virus attacked using the Berkeley remote execution
protocol, which required the user name and plaintext pass-
word to be passed over the net. The program only used pairs
of user names and passwords which it had already tested
and found to be correct on the local host. A common, world
readable file (/etc/passwd) that contains the user names
and encrypted passwords for every user on the system fa-
cilitated this search. Specifically:

3MIT’s Project Athena has a ‘‘write’’daemonwhich has a similar piece
of code with the same flaw but it explicitly exits rather than returning, and
thus never uses the (damaged) return stack. A comment in the code notes
that it is mostly copied from the finger daemon.

� this file was an easy-to-obtain list of user names to at-
tack,

� the dictionary attack was a method of verifying pass-
word guesses which would not be noted in security
logs.

The principle of ‘‘least privilege’’ [15] is violated by the
existence of this password file. Typical programs have no
need for a list of user names and password strings, so this
privileged information should not be available to them. For
example, Project Athena’s network authentication system,
Kerberos[16], keeps passwords on a central server which
logs authentication requests, thus hiding the list of valid
user names. However, once a name is found, the authen-
tication ‘‘ticket’’ is still vulnerable to dictionary attack.

2.1.4 Rsh and Trust

The virus attempted to use the Berkeley remote shell pro-
gram (calledrsh) to attack other machines without using
passwords. The remote shell utility is similar in function
to the remote execution system, although it is ‘‘friendlier’’
since the remote end of the connection is a command inter-
preter, instead of theexecfunction. For convenience, a file
/etc/hosts.equiv can contain a list of hosts trusted
by this host. The.rhosts file provides similar function-
ality on a per-user basis. The remote host can pass the user
name from a trusted port (one which can only be opened
by root) and the local host will trust that as proof that the
connection is being made for the named user.

This system has an important design flaw, which is that
the local host only knows the remote host by its network
address, which can often be forged. It also trusts the ma-
chine, rather than any property of the user, leaving the ac-
count open to attack at all times rather than when the user
is present [16]. The virus took advantage of the latter flaw
to propagate between accounts on trusted machines. Least
privilege would also indicate that the lists of trusted ma-
chines be only accessible to the daemons who need to de-
cide to whether or not to grant access.

2.1.5 Information Flow

When it became clear that the virus was propagating via
sendmail , the first reaction of many sites was to cut off
mail service. This turned out to be aseriousmistake, since
it cut off the information needed to fix the problem. Mailer
programs on major forwarding nodes, such asrelay.cs.net,
were shut down delaying some critical messages by as long
as twenty hours. Since the virus had alternate infection
channels (rexec andfinger), this made the isolated ma-
chine a safe haven for the virus, as well as cutting off infor-
mation from machines further ‘‘downstream’’ (thus placing
them in greater danger) since no informationabout the virus

4

could reach them by mail4. Thus, by attackingsendmail ,
the virus indirectly attacked the flow of information that
was the only real defense against its spread.

2.2 Self Protection

The virus used a number of techniques to evade detection.
It attempted both to cover it tracks and to blend into the
normal UNIX environment using camouflage. These tech-
niques had had varying degrees of effectiveness.

2.2.1 Covering Tracks

The program did a number of things to cover its trail. It
erased its argument list, once it had finished processing the
arguments, so that the process status command would not
show how it was invoked.

It also deleted the executing binary, which would leave
the data intact but unnamed, and only referenced by the
execution of the program. If the machine were rebooted
while the virus was actually running, the file system sal-
vager would recover the file after the reboot. Otherwise the
program would vanish after exiting.

The program also used resource limit functions to pre-
vent a core dump. Thus, it prevented any bugs in the pro-
gram from leaving tell-tale traces behind.

2.2.2 Camouflage

It was compiled under the namesh , the same name used
by the Bourne Shell, a command interpreter which is of-
ten used in shell scripts and automatic commands. Even a
diligent system manager would probably not notice a large
number of shells running for short periods of time.

The virus forked, splitting into a parent and child, ap-
proximately every three minutes. The parent would then
exit, leaving the child to continue from the exact same
place. This had the effect of ‘‘refreshing’’ the process, since
thenew fork started off with no resources used, such as CPU
time or memory usage. It also kept each run of the virus
short, making the virus a more difficult to seize, even when
it had been noticed.

All the constant strings used by the program were ob-
scured by XOR’ing each character with the constant 8116.
This meant that one could not simply look at the binary to
determine what constants the virus refered to (e.g. what
files it opened). But it was a weak method of hiding the
strings; it delayed efforts to understand the virus, but not
for very long.

4USENET news [17] was an effective side-channel of information
spread, although a number of sites disabled that as well.

2.3 Flaws

The virus also had a number of flaws, ranging from the sub-
tle to the clumsy. One of the later messages from Berkeley
posted fixes for some of the more obvious ones, as a humor-
ous gesture.

2.3.1 Reinfection prevention

The code for preventing reinfection of an actively infected
machine harbored some major flaws. These flaws turned
out to be critical to the ultimate ‘‘failure’’ of the virus, as
reinfection drove up the load of many machines, causing it
to be noticed and thus counterattacked.

The code had several timing flaws which made it un-
likely to work. While written in a ‘‘paranoid’’ manner, us-
ing weak authentication (exchanging ‘‘magic’’ numbers) to
determine whether the other end of the connection is indeed
a copy of the virus, these routines would often exit with er-
rors (and thusnotattempt to quit) if:
� several viruses infected a clean machine at once, in

which case all of them would look for listeners; none
of them would find any; all of them would attempt
to become listeners; one would succeed; the others
would fail, give up, and thus be invulnerable to future
checking attempts.

� several viruses starting at once, in the presence of a
running virus. If the first one ‘‘wins the coin toss’’
with the listening virus, other new-starting ones will
have contacted the losing one and have the connection
closed upon them, permitting them to continue.

� a machine is slow or heavily loaded, which could cause
the virus to exceed the timeouts imposed on the ex-
change of numbers, especially if the compiler was run-
ning (possibly multiple times) due to a new infection;
note that this is exacerbated by a busy machine (which
slows down further) on a moderately sized network.

Note that ‘‘at once’’ means ‘‘withina 5-20 second window’’
in most cases, and is sometimes looser.

A critical weakness in the interlocking code is that even
when it doesdecide to quit, all it does is set the variable
pleasequit . This variable does not have an effect until
the virus has gone through
� collecting the entire list of host names to attack
� collecting the entire list of user names to attack
� trying to attack all of the ‘‘obvious’’ permutation pass-

words (see Section A.4.3)
� trying ten words selected at random from the inter-

nal dictionary (see Appendix B) against all of the user
names

Since the virus was careful to clean up temporary files,
its presence alone didn’t interfere with reinfection.

Also, a multiply infected machine would spread the virus
faster, perhaps proportionally to the number of infections it

5

was harboring, since
� the program scrambles the lists of hosts and users it

attacks; since the random number generator is seeded
with the current time, the separate instances are likely
to hit separate targets.

� the program tries to spend a large amount of time
sleeping and listening for other infection attempts
(which never report themselves) so that the processes
would share the resources of the machine fairly well.

Thus, the virus spread much more quickly than the perpe-
trator expected, and was noticed for that very reason. The
MIT Media Lab, for example, cut themselves completely
off from the network because the computer resources ab-
sorbed by the virus were detracting from work in progress,
while the lack of network service was a minor problem.

2.3.2 Heuristics

One attempt to make the program not waste time on non-
UNIX systems was to sometimes try to open a telnet or rsh
connection to a host before trying to attack it and skipping
that host if it refused the connection. If the host refused
telnetor rsh connections, it was likely to refuse other attacks
as well. There were several problems with this heuristic:
� A number of machines exist which provide mail ser-

vice (for example) but that do not provide telnet or rsh
service, and although vulnerable, would be ignored
under this attack. The MIT Project Athena mailhub,
athena.mit.edu, is but one example.

� The telnet ‘‘probing’’ code immediately closed the
connection upon finding that it had opened it. By
the time the ‘‘inet daemon’’, the ‘‘switching station’’
which handles most incoming network services, iden-
tified the connection and started a telnet daemon, the
connection was already closed, causing the telnet dae-
mon to indicate an error condition of high enough pri-
ority to be logged on most systems. Thus the times
of the earliest attacks were noted, if not the machines
they came from.

2.3.3 Vulnerabilities not used

The virus did not exploit a number of obvious opportunities.
� When looking for lists of hosts to attack, it could have

done ‘‘zone transfers’’ from the Internet domain name
servers to find names of valid hosts [18]. Many of
these records also include host type, so the search
could have limited itself to the appropriate processor
and operating system types.

� It did not attack both machine types consistently. If
the VAX finger attack failed, it could have tried a Sun
attack, but that hadn’t been implemented.

� It did not try to find privileged users on the local host
(such asroot).

2.4 Defenses

There were many attempts to stop the virus. They varied in
inconvenience to the end users of the vulnerable systems,
in the amount of skill required to implement them, and in
their effectiveness.

� Full isolation from network was frequently inconve-
nient, but was very effective in stopping the virus, and
was simple to implement.

� Turning off mail service was inconvenient both to lo-
cal users and to ‘‘downstream’’ sites, was ineffective
at stopping the virus, but was simple to implement.

� Patching out thedebug command insendmail was
only effective in conjunction with other fixes, did not
interfere with normal users, and simple instructions for
implementing the change were available.

� Shutting down the finger daemon was also effective
only if the other holes were plugged as well, was an-
noying to users if not actually inconvenient, and was
simple to perform.

� Fixing the finger daemon required source code, but
was as effective as shutting it down, without annoy-
ing the users at all.

� mkdir /usr/tmp/sh was convenient, simple, and
effective in preventing the virus from propagating5

(See Section A.8.2.)
� Defining pleasequit in the system libraries was

convenient, simple, and did almost nothing to stop the
virus (See Section A.3.2.)

� Renaming the UNIX C compiler and linker (cc and
ld) was drastic, and somewhat inconvenient to users
(though much less so than cutting off the network,
since different names were available) but effective in
stopping the virus.

� Requiring new passwords for all users (or at least all
users who had passwords which the virus could guess)
was difficult, but it only inconvenienced those users
with weak passwords to begin with, and was effective
in conjunction with the other fixes (See Section A.4.3
and Appendix B.)

After the virus was analyzed, a tool which duplicated the
password attack (including the virus’ internal dictionary)
was posted to the network. This tool allowed system admin-
istrators to analyze the passwords in use on their system.
The spread of this virus should be effective in raising the
awareness of users (and administrators) to the importance
of choosing ‘‘difficult’’ passwords. Lawrence Livermore
National Laboratories went as far as requiring all passwords
be changed, and modifying the password changing program
to test new passwords against the lists that include the pass-
words attacked by the virus [6].

5However, both sets of binaries were still compiled, consuming pro-
cessor time on an attacked machine.

6

3 Chronology

This is a description of the chronology of the virus, as seen
from MIT. It is intended as a description of how one major
Internet site discovered and reacted to the virus. This in-
cludes the actions of our group at MIT which wound up de-
compiling the virus and discovering its inner details, and the
people across country who were mounting similar efforts.
It is our belief that the people involved acted swiftly and ef-
fectively during the crisis and deserve many thanks. Also,
there is much to be learned from the way events unfolded.
Some clear lessons for the future emerged, and as usual,
many unresolved and difficult issues have also risen to the
forefront to be considered by the networking and computer
community.

The events described took place between Wednesday 2
November 1988 and Friday 11 November 1988. All times
are stated in eastern standard time.

3.1 Wednesday: Genesis

Gene Myers[6] of the NCSC analyzed the Cornell6 mailer
logs. He found that testing of thesendmail attack first oc-
curred on 19 October 1988 and continued through 28 Octo-
ber 1988. On 29 October 1988, there was an increased level
of testing; Gene believes the virus author was attempting to
send the binaries over the SMTP connections, an attempt
which was bound to fail since the SMTP is only defined for
7 bit ASCII data transfers[12]. The author appeared to go
back to the drawing board, returning with the ‘‘grappling
hook’’ program (see section A.7) on Wednesday 2 Novem-
ber 1988. The virus was tested or launched at 5:01:59pm.
The logs show it infecting a second Cornell machine at
5:04pm. This may have been the genesis of the virus, but
that is disputed by reports in the New York Times[11] in
which Paul Graham of Harvard states the virus started on a
machine at the MIT AI Lab via remote login from Cornell.
Cliff Stollof Harvard also believes that the virus was started
from the MIT AI Lab. At the time this paper was written,
nobody has analyzed the infected Cornell machines to de-
termine where the virus would have gone next if they were
indeed the first infected machines.

In any case, Paul Flaherty of Stanford reported to thetcp-
group@ucsd.edumailing list on Friday that Stanford was
infected at 9:00pm and that it got to ‘‘most of the campus
UNIX machines (cf. ˜ 2500 boxes).’’ He also reported the
virus originated fromprep.ai.mit.edu. This is the earliest
report of the virus we have seen.

At 9:30pm Wednesday,wombat.mit.edu, a private work-
station at MIT Project Athena maintained by Mike Shanzer

6Cornell systems personel had discovered unusual messages in their
mailer logs and passed the logs to Berkeley which passed them to the
NCSC. Later it was reported that the alleged author of the virus was a
Cornell graduate student[19].

was infected. It was running a version ofsendmail with
thedebug command turned on. Mike believes that the at-
tack came fromprep.ai.mit.edusince he had an account on
prepandwombatwas listed in his.rhosts , a file which
specifies a list of hosts and users on those hosts who may log
into an account over the network without supplying a pass-
word. Unfortunately the appropriate logs were lost, mak-
ing the source of the infection uncertain. (The logs onprep
were forwarded viasyslog , the 4.3BSD UNIX logging
package, to another host which was down and by the time
anybody looked thewtmp log, which records logins, it was
truncated, perhaps deliberately, to some point on Thursday.
The lack of logging information and the routine discarding
of what old logs did exist hampered investigations.)

Mike Muuss of BRL reported at the NCSC meeting that
RAND was also hit at 9:00pm or soon thereafter; Steve
Miller of the University of Maryland (UMD) reports the
UMD was first hit at 10:54pm; Phil Lapsley of the Univer-
sity of California, Berkeley (UCB) stated that Berkeley was
hit at 11:00pm.

3.2 Thursday Morning: “This isn’t April
First”

3.2.1 More People Notice the Virus

Dave Edwards, of SRI International, said at the NCSC
meeting that SRI was hit at midnight. Chuck Cole and Rus-
sell Brand of the Lawrence Livermore National Laboratory
(LLNL) reported that they were assembling their response
team by 2:00am, and John Bruner independently reported
spotting the virus on the S1 machines at LLNL about that
time.

Pascal Chesnais of the MIT Media Lab was one of the
first people at MIT to spot the virus, after 10:00pm Wednes-
day, but assumed it was just ‘‘a local runaway program’’. A
group at the Media lab killed the anomalous shell and com-
pilers processes, and all seemed normal. After going for an
dinner and ice cream, they figured out that it was a virus
and it was coming in via mail. Their response was to shut
down network services such as mail and to isolate them-
selves from the campus network. The MIT Telecommuni-
cations Network Group’s monitoringinformation shows the
Media Lab gateway first went down at 11:40pm Wednes-
day, but was back up by 3:00am. At 3:10am Pascal gave
the first notice of the virus at MIT, by creating a message of
the day onmedia-lab(see Figure 1).

3.2.2 False Alarms or Testing?

Pascal later reported that logs onmedia-labshow several
scattered messages, ‘‘ttloop: peer died: No such file or di-
rectory’’, which frequently occurred just before the virus

7

A Virus has been detected on media-lab, we suspect that whole internet is
infected by now. The virus is spread via mail of all things... So Mail
outside of media-lab will NOT be accepted. Mail addressed to foreign
hosts will NOT be delivered. This situation will continue until someone
figures out a way of killing the virus and telling everyone how to
do it without using email...

--- lacsap Nov 3 1988 03:10am

Figure 1: Thursday morning’s message of the day onmedia-lab.mit.edu.

attacked (see section A.5.2). There were a few every cou-
ple of days, several during Wednesday afternoon and many
starting at 9:48pm. The logs onmedia-labstart on 25 Oc-
tober 1988 and entries were made bytelnetd on the fol-
lowing dates before the swarm on Wednesday night: Oct
26 15:01:57, Oct 28 11:26:55, Oct 28 17:36:51, Oct 31
16:24:41, Nov 1 16:08:24, Nov 1 18:02:43, Nov 1 18:58:30,
Nov 2 12:23:51, and Nov 2 15:21:47.

It is not clear whether these represent early testing of the
virus, or if they were just truly accidental premature clos-
ings of telnet connections. We assume the latter. With hind-
sight we can say atelnetd that logged its peer address,
even for such error messages, would have been quite useful
in tracing the origin and progress of the virus.

3.2.3 E-mail warnings

The first posting mentioning the virus was by Peter Yee of
NASA Ames at 2:28am on Wednesday to thetcp-ip@sri-
nic.arpamailing list. Peter stated that UCB, UCSD, LLNL,
Stanford, and NASA Ames had been attacked, and de-
scribed the use of sendmail to pull over the virus bina-
ries, including the x* files which the virus briefly stored
in /usr/tmp . The virus was observed sending VAX and
Sun binaries, having DES tables built in, and making some
use of.rhosts andhosts.equiv files. A phone num-
ber at Berkeley was given and Phil Lapsley and Kurt Pires
were listed as being knowledgeable about the virus.

At 3:34am Andy Sudduth from Harvard made his anony-
mous posting7 to tcp-ip@sri-nic.arpa8 The posting said
that a virus might be loose on the Internet and that there
were three steps to take to prevent further transmission.
These included not runningfingerd or fixing it not to
overwrite the stack when reading its arguments from the

7In a message to the same mailing list on Saturday 5 November 1988,
he acknowledged being the author of the Thursday morning message and
stated he had posted the message anonymously because ‘‘at the time I
didn’t want to answer questions about how I knew.’’

8An ‘‘obscure electronic bulletin board’’, according to the New York
Times[11]. Nothing could be further from the truth.

net9, being suresendmail was compiled without the
debug command, and not runningrexecd .

Mike Patton, Network Manager for the MIT Laboratory
for Computer Science (LCS), was the first to point out to us
the peculiarities of this posting. It was made from an Annex
terminal server10 at Aiken Laboratory at Harvard, by tel-
neting to the SMTP port ofiris.brown.edu. This is obvious
since the message was from ‘‘foo%bar.arpa’’ and because
the last line of the message was ‘‘quin177n177n177’’, an
attempt to get rubout processing out of the Brown SMTP
server, a common mistake when faking Internet mail.

It was ironic that this posting did almost no good. Figure
2 shows the path it took to get to Athena. There was a 20
hour delay before the message escaped fromrelay.cs.net11

and got tosri-nic.arpa. Another 6 hours went by before
the message was received byathena.mit.edu12. Other sites
have reported similar delays.

3.2.4 Yet More People Notice the Virus

About 4:00am Thursday Richard Basch of MIT Project
Athena noticed a ‘‘text table full’’syslog message from
paris.mit.edu, an Athena development machine. Since
there was only one message and he was busy doing a project
for a digital design lab course, he ignored it.

At 4:51am Chris Hanson of the MIT AI Laboratory re-
ported spotting anomalous telnet traffic to serveral gate-
ways coming from machines at LCS. He noted that the at-
tempts were occurring every one or two seconds and had
been happening for several hours.

At 5:58am Thursday morning Keith Bostic of Berke-
ley made the first bug fix posting. The message went

9This was a level of detail that only the originator of the virus could
have known at that time. To our knowledge nobody had yet identified the
finger bug, since it only affected certain VAX hosts, and certainly nobody
had discovered its mechanism.
10Perhaps ironically namedinfluenza.harvard.edu.
11This is probably becauserelay.cs.netwas off the air during most of

the crisis.
12Phil Lapsley and Mike Karels of Berkeley reported that the only way

to get mail totcp-ip@sri-nic.arpato flow quickly is to call up Mark Lottor
at SRI and ask him to manually push the queue through.

8

Received: by ATHENA.MIT.EDU (5.45/4.7) id AA29119; Sat, 5 Nov 88 05:59:13 EST
Received: from RELAY.CS.NET by SRI-NIC.ARPA with TCP; Fri, 4 Nov 88 23:23:24 PST
Received: from cs.brown.edu by RELAY.CS.NET id aa05627; 3 Nov 88 3:47 EST
Received: from iris.brown.edu (iris.ARPA) by cs.brown.edu (1.2/1.00)

id AA12595; Thu, 3 Nov 88 03:47:19 est
Received: from (128.103.1.92) with SMTP via tcp/ip

by iris.brown.edu on Thu, 3 Nov 88 03:34:46 EST

Figure 2: Path of Andy Sudduth’s warning message from Harvard to MIT.

to the tcp-ip@sri-nic.arpa mailing list and the news-
groups comp.bugs.4bsd.ucb-fixes, news.announce, and
news.sysadmin. It supplied the ‘‘compile without the debug
command’’ fix tosendmail (or patch thedebug com-
mand to a garbage string), as well as the very wise sug-
gestion to rename the UNIX C compiler and loader (cc
and ld), which was effective since the virus needed to
compile and link itself, and which would be effective at
protecting against non-sendmail attacks, whatever those
might have turned out to be. It also told people that the
virus renamed itself to ‘‘(sh)’’ and used temporary files
in /usr/tmp named XNNN,vax.o, XNNN,sun3.o, and
XNNN,l1.c (where NNN were random numbers, possibly
process id’s), and suggested that you could identify infected
machine by looking for these files. That was somewhat dif-
ficult to do in practice, however, since the virus quickly got
rid of all of these files. A somewhat better solution was
proposed later in the day by, among others, John Kohl of
DEC and Project Athena, who suggested doing acat -v
/usr/tmp , thus revealing the raw contents of the direc-
tory, including the names of deleted files whose directory
slots had not yet been re-used13.

The fingerd attack was not even known, much less
understood, at this point. Phil Lapsley reported at the
NCSC meeting that Ed Wang of Berkeley discovered the
fingerd mechanism around 8:00am and sent mail to
Mike Karels, but this mail went unread until after the crisis
had passed.

At 8:06am Gene Spafford of Purdue forwarded to
thenntp-managers@ucbvax.berkeley.edumailing list Keith
Bostic’s fixes. Ted Ts’o of MIT Project Athena forwarded
this to an internal Project Athena hackers list (watchmak-
ers@athena.mit.edu) at 10:07am. He expressed disbelief
(‘‘no, it’s not April 1st’’), and thought Athena machines
were safe. Though no production Athena servers were in-
fected, several private workstations and development ma-
chines were, so this proved overly optimistic.

Mark Reinhold, a MIT LCS graduate student, reacted

13Jerry Saltzer, MIT EECS Professor and Technical Director of Project
Athena, includedsimilar detectionadvice in a messagedescribing the virus
to the Athena staff sent at 11:17am on Friday.

to the virus around 8:00am by powering off some network
equipment in LCS. Tim Shepard, also a LCS graduate stu-
dent, soon joined him. They were hampered by a growing
number of people who wanted information about what was
happening. Mark and Tim tried to call Peter Yee several
times and eventually managed to get through to Phil Laps-
ley who relayed what was then known about the virus.

At about this time, Richard Basch returned to his work-
station (you can only do so much school-work after all)
and noticed many duplicates of the ‘‘text table full’’ mes-
sages fromparis and went to investigate. He discovered
several suspicious logins from old accounts which should
have long ago been purged. The load was intolerably high,
and he only managed to get one line out of anetstat
command before giving up, but that proved quite interest-
ing. It showed an outgoingrsh connection fromparis to
fmgc.mit.edu, which is a standalone non-UNIX gateway.

During Thursday morning Ray Hirschfeld spotted the
virus on the MIT Math department Sun workstations and
shut down the math gateway to the MIT backbone at
10:15am. It remained down until 3:15pm.

Around 11:00am the MIT Statistics Center called Dan
Geer, Manager of System Development at Project Athena.
One of their Sun workstations,dolphin.mit.eduhad been
infected via a Project Athena guest account with a weak
password, along with the account of a former staff member.
This infection had spread to all hosts in the Statistics Cen-
ter. They had been trying for some time prior to call Dan
to eradicate the virus, but the continual reinfection among
their local hosts had proved insurmountably baffling.

Keith Bostic sent a second virus fix message to
comp.4bsd.ucb-fixesat 11:12am. It suggested using 0xff
instead of 0x00 in the binary patch tosendmail . The
previous patch, while effective against the current virus,
would drop you into debug mode if you sent an empty com-
mand line. He also suggested using the UNIXstrings
command to look in thesendmail binary for the string
‘‘debug’’. If it didn’t appear at all then your version of
sendmail was safe.

About 11:30am Pascal Chesnais requested that the Net-
work Group isolate the Media Lab building and it remained

9

so isolated until Friday at 2:30pm.
Russ Mundy of the Defense Communications Agency

reported at the NCSC meeting that the MILNET to
ARPANET mailbridges were shut down at 11:30am and re-
mained down until Friday at 11:00am.

In response to complaints from non-UNIX users, Mark
Reinhold and Stan Zanarotti, another LCS graduate stu-
dent, turned on the repeaters at LCS which had been pre-
viously powered down and physically disconnected UNIX
machines from the network around 11:15am. Tim Shep-
ard reloaded a root partition of one machine from tape (to
start with known software), and added a feature tofind , a
UNIX file system scanner, to report low-level modification
times. Working with Jim Fulton of the X Consortium, Tim
inspectedallspice.lcs.mit.edu; by 1:00pm, they had verified
that the virus had not modified any files onallspiceand had
installed a recompiledsendmail .

3.3 Thursday Afternoon: “This is Bad
News”

3.3.1 Word Spreads

By the time Jon Rochlis of the MIT Telecommunications
Network Group arrived for work around noon on Thursday
3 November 1988, the Network Group had received mes-
sages from MIT Lincoln Laboratory saying they had ‘‘been
brought to their knees’’ by the virus, from Sergio Heker
of the John Von Neumann National Supercomputer Center
warning of network problems, and from Kent England of
Boston University saying they had cut their external links.
The MIT Network Group loathed the thought of severing
MIT’s external connections and never did throughout the
crisis.

At 1:30pm Dan Geer and Jeff Schiller, Manager of the
MIT Network and Project Athena Operations Manager, re-
turned to the MIT Statistics Center and were able to get both
VAX and Sun binaries from infected machines.

Gene Spafford posted a message at 2:50pm Thursday to
a large number of people and mailing lists includingnntp-
managers@ucbvax.berkeley.edu, which is how we saw it
quickly at MIT. It warned that the virus usedrsh and
looked inhosts.equiv and .rhosts for more hosts
to attack.

Around this time the MIT group in E40 (Project Athena
and the Telecommunications Network Group) called Milo
Medin of NASA and found out much of the above. Many
of us had not yet seen the messages. He pointed out that
the virus just loved to attack gateways, which were found
via the routing tables, and remarked that it must have not
been effective at MIT where we run our own C Gateway
code on our routers, not UNIX. Milo also said that it seemed
to randomly attack network services, swamping them with
input. Some daemons that ran on non-standard ports had

logged such abnormal input. At the time we thought the
virus might be systematically attacking all possible network
services exploiting some unknown common flaw. This was
not true but it seemed scary at the time. Milo also informed
us that DCA had shut down the mailbridges which serve
as gateways between the MILNET and the ARPANET. He
pointed us to the group at Berkeley and Peter Yee specifi-
cally.

3.3.2 It uses finger

At about 6:00pm on Thursday, Ron Hoffmann, of the MIT
Telecommunications Network Group, observed the virus
attempting to log into a standalone router using the Berke-
ley remote login protocol; the remote login attempt origi-
nated from a machine previously believed immune since it
was running a mailer with thedebug command turned off.
The virus was running under the user name ofnobody ,
and it appeared that it had to be attacking through the fin-
ger service, the only network service running under that
user name. At that point, we called the group working at
Berkeley; they confirmed our suspicions that the virus was
spreading throughfingerd .

On the surface, it seemed thatfingerd was too simple
to have a protection bug similar to the one insendmail ;
it was a very short program, and the only program it in-
voked (using the UNIXexecsystem call) was named using
a constant pathname. A check of the modification dates of
both/etc/fingerd and/usr/ucb/finger showed
that both had been untouched, and both were identical to
known good copies located on a read-only filesystem.

Berkeley reported that the attack on finger involved
‘‘shoving some garbage at it’’, probably control A’s; clearly
an overrun buffer wound up corrupting something.

Bill Sommerfeld of Apollo Computer and MIT Project
Athena guessed that this bug might involve overwriting the
saved program counter in the stack frame; when he looked
at the source forfingerd , he found that the buffer it was
using was located on the stack; in addition, the program
used the C librarygetsfunction, which assumes that the
buffer it is given is long enough for the line it is about to
read. To verify that this was a viable attack, he then went
on to write a program which exploited this hole in a benign
way. The test virus sent the string ‘‘Bozo!’’ back out the
network connection.

Miek Rowan and Mike Spitzer also report having dis-
covered thefingerd mechanism at about the same time
and forwarded their discovery to Gene Spafford and Keith
Bostic, but in the heat of the moment the discovery went
unrecognized. Liudvikas Bukys of the University of
Rochester posted to thecomp.bugs.4bsdnewsgroup a de-
tailed description of thefingerd mechanism at 7:21pm.
The message also stated that the virus used telnet but per-

10

haps that was only after cracking passwords. In reality it
only sometimes used telnet to ‘‘qualify’’ a machine for later
attack, and only usedrsh andrexec to take advantage of
passwords it had guessed.

A risks@kl.sri.comdigest[20] came out at 6:52pm. It
included a message from Cliff Stoll which described the
spread of the virus on MILNET and suggested that MIL-
NET sites might want to remove themselves from the net-
work. Cliff concluded by saying, ‘‘This is bad news.’’
Other messages were from Gene Spafford, Peter Neumann
of SRI, and Matt Bishop of Dartmouth. They described the
sendmail propagation mechanism.

3.4 Thursday Evening: “With Microscope
and Tweezers”

3.4.1 Getting Down To Work

In the office of the Student Information Processing Board
(SIPB), Stan Zanarotti and Ted Ts’o had managed to get
a VAX binary and core dump from the virus while it was
running on a machine at LCS.

Stan and Ted started attacking the virus. Pretty soon they
had figured out the xor encoding of the text strings embed-
ded in the program and were manually decoding them. By
9:00pm Ted had written a program to decode all the strings
and we had the list of strings used by the program, except
for the built-in dictionary which was encoded in a different
fashion (by turning on the high order bit of each character).

At the same time they discovered the ip address of
ernie.berkeley.edu, 128.32.137.13, in the program; they
proceeded to take apart the virus routinesendmessageto
figure out what it was sending toernie, how often, and if a
handshake was involved. Stan told Jon Rochlis in the MIT
Network Group of the SIPB group’s progress. The people
in E40 called Berkeley and reported the finding ofernie’s
address. Nobody seemed to have any idea why that was
there.

At 9:20pm Gene Spafford created the mailing list
phage@purdue.edu. It included all the people he had been
mailing virus information to since the morning; more peo-
ple were to be added during the next few days. This list
proved invaluable, since it seemed to have many of the
‘‘right’’ people on it and seemed to work in near real time
despite all the network outages.

At 10:18pm Keith Bostic made his third bug fix posting.
It included new source code forfingerd which usedfgets
instead ofgetsand did anexit instead ofreturn. He also
included a more generalsendmail patch which disabled
thedebug command completely.

3.4.2 The Media Descends

About this time a camera crew from WNEV-TV Channel 7
(the Boston CBS affiliate) showed up at the office of James
D. Bruce, MIT EECS Professor and Vice President for In-
formation Systems. He called Jeff Schiller and headed over
to E40. They were both were interviewed and stated that
there were 60,000 Internet hosts14, along with an estimate
of 10% infection rate for the 2,000 hosts at MIT. The in-
fection rate was a pure guess, but seemed reasonable at the
time. These numbers were to stick in a way we never an-
ticipated. Some of the press reports were careful to explain
the derivation of the numbers they quoted, including how
one could extrapolate that as many as 6,000 computers were
infected, but many reports were not that good and simply
stated things like ‘‘at least 6,000 machines had been hit.’’

We were unable to show the TV crew anything ‘‘visual’’
caused by the virus, something which eventually became a
common media request and disappointment. Instead they
settled for people looking at workstations talking ‘‘com-
puter talk.’’

The virus was the lead story on the 11:00pm news and
was mentioned on National Public Radio as well. We were
quite surprised that the real world would pay so much at-
tention. Sound bites were heard on the 2:00am CBS Radio
News, and footage shot that evening was shown on the CBS
morning news (but by that pointwe were too busy to watch).

After watching the story on the 11:00pm news we real-
ized it was time to get serious about figuring out the detailed
workings of the virus. We all agreed that decompiling was
the route to take, though later we also mounted an effort to
infect a specially instrumented machine to see the virus in
operation. As Jerry Saltzer said in a later message to the
Project Athena staff, we undertook a ‘‘wizard-level analy-
sis’’ by going over the virus ‘‘with microscope and tweez-
ers.’’

3.5 Friday: “Where’s Sigourney Weaver?”

3.5.1 Decompiling in Earnest

Tim Shepard joined the group in E40, just before midnight
on Thursday. We thought we saw packets going toernie
and replies coming back, though this later proved to be an
illusion. Tim had hundreds of megabytes of packet headers
gathered Thursday morning from a subnet at LCS which
was known to have had infected machines on it. Unfortu-
nately the data was sitting on a machine at LCS, which was
still off the network, so Tim decided to go back and look
through his data. Within an hour or two, Tim called back
to say that he found no unusual traffic toernieat all. This
was our first good confirmation that theerniepackets were

14This was based on Mark Lottor’s presentation to the October 1988
meeting of the Internet Engineering Task Force.

11

a red-herring or at least that they didn’t actually wind up
being sent.

Serious decompiling began after midnight. Stan and Ted
soon left the SIPB office and joined the group working in
E40, bringing with them the decoding of the strings and
much of the decompiled main module for the virus. Mark
Eichin, who had recently spent a lot of time disassembling-
assembling some ROMs and thus had recent experience at
reverse engineering binaries, took the lead in dividing the
project up and assigning parts to people. He had also woke
up in late afternoon and was the most prepared for the long
night ahead.

At 1:55am Mark discovered the first of the bugs in the
virus. A bzerocall in if init was botched. At 2:04am Stan
had a version of the main module that compiled. We called
Keith Bostic at Berkeley at 2:20am and arranged to do FTP
exchanges of source code on an MIT machine (both Berke-
ley and MIT had never cut their outside network connec-
tions). Unfortunately, Keith was unable to get the hackers
at Berkeley to take a break and batch up their work, so no
exchange happened at that time.

At 2:45am Mark started working oncheckother15 since
the Berkeley folks were puzzled by it. Jon Rochlis was
working on the latercracksomeroutines. By 3:06am Ted
had figured out thatha built a table of target hosts which
had telnet listeners running. By 3:17am Ted and Hal Birke-
land from the Media Lab had determined that thecrypt rou-
tine was the same as one found in the C library. Nobody
had yet offered a reason why it was included in the virus,
rather than being picked up at link time16. Mark had fin-
ishedcheckotherand Ted had finishedpermuteat 3:28am.
We worked on other routines throughout the morning.

3.5.2 Observations from Running the Virus

The first method of understanding the virus was the decom-
pilationeffort. A second method was to watch the virus as it
ran, in an attempt to characterize what it was doing – this is
akin to looking at the symptoms of a biological virus, rather
than analyzing the DNA of the virus.

We wanted to do several things to prepare for observing
the virus:

� Monitoring. We wanted to set up a machine with spe-
cial logging, mostly including packet monitors.

� Pointers. We wanted to ‘‘prime’’ the machine with
pointers to other machines so we could watch how the
virus would attack its targets. By placing the names

15This and all the other routines mentioned here are described in detail
in Appendix A. The routines mentioned here are not intended to be an
exhaustive list of the routines we worked on.
16It turned out that we were wrong and the version ofcryptwasnot the

same as library version[9]. Not everything you do at 3:00am turns out to
be right.

of the target machines in many different places on the
‘‘host’’ computer we could also see how the virus cre-
ated its lists of targets.

� Isolation. We considered isolating the machines in-
volved from the network totally (for paranoia’s sake)
or by a link-layer bridge to cut down on the amount
of extraneous traffic monitored. True isolation proved
more than we were willing to deal with at the time,
since all of our UNIX workstations assume access to
many network services such as nameservers and file
servers. We didn’t want to take the time to build a
functional standalone system, though that would have
been feasible if we had judged the risk of infecting
other machines too great.

Mike Muuss reported that the BRL group focused on
monitoring the virus in action. They prepared a special log-
ging kernel, but even in coordination with Berkeley were
unable to re-infect the machine in question until Saturday.

By 1:00am Friday we had set up the monitoring equip-
ment (an IBM PC running a packet monitor) and two work-
stations (one acting as the target, the other running a packet
monitoring program and saving the packet traces to disk),
all separated from the network by a link-layer bridge and
had dubbed the whole setup the ‘‘virus net’’. We, too, were
unsuccessful in our attempt to get our target machine in-
fected until we had enough of the virus decompiled to un-
derstand what arguments it wanted. By 3:40am John Kohl
had the virus running on our ”virus net” and we learned a
lot by watching what it did. The virus was soon observed
trying telnet, SMTP, and finger connections to all gateways
listed in the routing table. Later it was seen tryingrsh and
rexec into one of the gateways.

At 4:22am, upon hearing of the virus going after yet an-
other host in a ‘‘new’’ manner, Jon Rochlis remarked ‘‘This
really feels like the movieAliens. So where is Sigourney
Weaver?’’ Seeing the virus reach out to infect other ma-
chines seemed quite scary and beyond our control.

At 5:45am we called the folks at Berkeley and finally ex-
changed code. A number of people in Berkeley had punted
to get some sleep, and we had a bit of difficulty convinc-
ing the person who answered Keith Bostic’s phone that we
weren’t the bad guy trying to fool them. We gave him a
number at MIT that showed up in the NIC’s whois database,
but he never bothered to call back.

At this point a bunch of us went out and brought back
some breakfast.

3.5.3 The Media Really Arrives

We had been very fortunate that the press did not distract
us, and that we were thus able to put most of our time into
our decompilation and analysis efforts. Jim Bruce and the

12

MIT News Office did a first rate job of dealing with most
of the press onslaught. By early morning Friday there was
so much media interest that MIT News Office scheduled
a press conference for noon in the Project Athena Visitor
Center in E40.

Just before the press conference, we briefed Jim on our
findings and what we thought was important: the virus
didn’t destroy or even try to destroy any data; it did not
appear to be an ‘‘accident;’’ we understood enough of the
virus to speak with authority; many people (especially the
people we had talked to at Berkeley) had helped to solve
this.

We were amazed at the size of the press conference –
there were approximately ten TV camera crews and twenty-
five reporters. Jeff Schiller spent a good amount of time
talking to reporters before the conference proper began, and
many got shots of Jeff pointing at the letters ‘‘(sh)’’ on the
output of aps command. Jim and Jeff answered questions
as the decompiling crew watched from a vantage point in
the back of the room. At one point a reporter asked Jeff how
many people had enough knowledge to write such a virus
and in particular, if Jeff could have written such a program.
The answer was of course many people could have written
it and yes, Jeff was one of them. The obvious question was
then asked: ‘‘Where were you on Wednesday night, Jeff?’’
This was received with a great deal of laughter. But when
a reporter stated that sources at the Pentagon had said that
the instigator of the virus had come forward and was a BU
or MIT graduate student, we all gasped and hoped it hadn’t
really been one of our students.

After the conference the press filmed many of us working
(or pretending to work) in front of computers, as well as
short interviews.

The media was uniformly disappointed that the virus did
nothing even remotely visual. Several also seemed pained
that we weren’t moments away from World War III, or
that there weren’t large numbers of companies and banks
hooked up to ‘‘MIT’s network’’ who were going to be re-
ally upset when Monday rolled around. But the vast major-
ity of the press seemed to be asking honest questions in an
attempt to grapple with the unfamiliar concepts of comput-
ers and networks. At the NCSC meeting Mike Muuss said,
‘‘My greatest fear was that of seeing aNational Enquirer
headline: Computer Virus Escapes to Humans, 96 Killed.’’
We were lucky that didn’t happen.

Perhaps the funniest thing done by the press was the pic-
ture of the virus code printed in Saturday’s edition of the
Boston Herald[21]. Jon Kamens of MIT Project Athena
had made a window dump of the assembly code for the
start of the virus (along with corresponding decompiled C
code), even including the window dump command itself.
The truly amusing thing was that theHeraldhad gotten an
artist to add tractor feed holes to the printout in an attempt

to make it look like something that a computer might have
generated. We’re sure they would have preferred a dot ma-
trix printer to the laser printer we used.

Keith Bostic called in the middle of the press zoo, but we
were too busy dealing with the press, so we cut the conver-
sation short. He called us back around 3:00pm and asked
for our affiliations for his next posting17. Keith also asked
if we liked the idea of posting bug fixes to the virus itself,
and we instantly agreed with glee. Keith made his fourth
bug fix posting at 5:04pm, this time with fixes to the virus.
Again he recommended renamingld, the UNIX linker.

Things began to wind down after that, though the press
was still calling and we managed to put off the NBCTo-
dayshow until Saturday afternoon. Most of us got a good
amount of sleep for the first time in several days.

3.6 Saturday: Source Code Policy

Saturday afternoon, 5 November 1988, theTodayshow
came to the SIPB Office, which they referred to as the
‘‘computer support club’’ (sic), to find a group of hackers.
They interviewed Mark Eichin and Jon Rochlis and used
Mark’s description of what hackers really try to do on Mon-
day morning’s show.

After the Todayshow crew left, many of us caught up
on our mail. It was then that we first saw Andy Sudduth’s
Thursday morning posting totcp-ip@sri-nic.arpaand Mike
Patton stopped by and pointed out how strange it was.

We soon foundourselves in the middle of a heated discus-
sion onphage@purdue.eduregarding distributionof the de-
compiled virus source code. Since we had received several
private requests for our work, we sat back and talked about
what to do, and quickly reached consensus. We agreed with
most of the other groups around the country who had come
to the decision not to release the source code they had re-
verse engineered. We felt strongly that the details of the in-
ner workings of the virus shouldnotbe kept hidden, but that
actual source code was a different matter. We (and others)
intended to write about the algorithms used by the virus so
that people would learn what the Internet community was
up against. This meant that somebody could use those al-
gorithms to write a new virus; but the knowledge required
to do so is much greater than what is necessary to recom-
pile the source code with a new, destructive line or two in
it. The energy barrier for this is simply too low. The people
on our team (not the MIT administration) decided to keep
our source private until things calmed down; then we would
consider to whom to distribute the program. A public post-
ing of the MIT code was not going to happen.

Jerry Saltzer, among others, has argued forcefully that
the code itself should be publicly released at some point in

17He almost got them right, except that he turned the Laboratory for
Computer Science into the Laboratory for Computer Services.

13

the future. After sites have had enough time to fix the holes
with vendor supplied bug fixes, we might do so.

3.7 Tuesday: The NCSC Meeting

OnTuesday 8 November 1988 Mark Eichin and Jon Rochlis
attended the Baltimore post-mortem meeting hosted by the
NCSC. We heard about the meeting indirectly at 2:00am
and flew to Baltimore at 7:00am. Figuring there was no
time to waste with silly things like sleep, we worked on
drafts of this document. The meeting will be described in
more detail by the NCSC, but we will present a very brief
summary here.

Attending the meeting were representatives of the Na-
tional Institute of Science and Technology (NIST), for-
merly the National Bureau of Standards, the Defense Com-
munications Agency (DCA) , the Defense Advanced Re-
search Projects Agency (DARPA), the Department of En-
ergy (DOE), the Ballistics Research Laboratory (BRL),
the Lawrence Livermore National Laboratory (LLNL), the
Central Intelligence Agency (CIA), the University of Cal-
ifornia Berkeley (UCB), the Massachusetts Institute of
Technology (MIT), Harvard University, SRI International,
the Federal Bureau of Investigation (FBI), and of course the
National Computer Security Center (NCSC). This is not a
complete list. The lack of any vendor participation was no-
table.

Three-quarters of the day was spent discussing what had
happened from the different perspectives of those attending.
This included chronologies, actions taken, and an analysis
of the detailed workings of the virus; Meanwhile our very
rough draft was duplicated and handed out.

The remaining time was spent discussing what we
learned from the attack and what should be done to pre-
pare for future attacks. This was much harder and it is
not clear that feasible solutions emerged, though there was
much agreement on several motherhood and apple-pie sug-
gestions. By this we mean the recommendations sound
good and and by themselves are not objectionable, but we
doubt they will be effective.

3.8 Wednesday-Friday: The Purdue Inci-
dent

On Wednesday evening 9 November 1988, Rich Kulawiec
of Purdue posted tophage@purdue.eduthat he was making
available theunas disassembler that he (and others at Pur-
due) used to disassemble the virus. He also made available
the output of running the virus through this program. Ru-
mor spread and soon the NCSC called several people at Pur-
due, including Gene Spafford, in an attempt to get this copy
of the virus removed. Eventually the President of Purdue
was called and the file was deleted. The New York Times

ran a heavily slanted story about the incident on Friday 11
November 1988[22].

Several mistakes were made here. First the NCSC was
concerned about the wrong thing. The disassembled virus
was not important and was trivial for any infected site to
generate. It simply was not anywhere near as important as
the decompiled virus, which could have very easily have
been compiled and run. When the MIT group was indirectly
informed about this and discovered exactly what was pub-
licly available, we wondered what the big deal was. Sec-
ondly, the NCSC acted in a strong-handed manner that up-
set the people at Purdue who got pushed around.

Other similar incidents occurred around the same time.
Jean Diaz of the MIT SIPB, fowarded a partially decom-
piled copy of the virus18 to phage@purdue.eduat some
time on Friday 4 November 1988, but it spent several days
in a mail queue onhplabs.hp.combefore surfacing. Thus it
had been posted before any of the discussion of source code
release had occurred. It also was very incomplete and thus
posed little danger since the effort required to turn it into
a working virus was akin to the effort required to write the
virus from scratch.

These two incidents, however, caused the press to think
that a second outbreak of the virus had once again brought
the network to its knees. Robert French, of the MIT SIPB
and Project Athena, took one such call on Thursday 10
November and informed the reporter that no such outbreak
had occurred. Apparently rumors of source code availabil-
ity (the Purdue incident and Jean’s posting) led to the erro-
neous conclusion that enough information of some sort had
been let out and damage had been done. Rumor control was
once again shown to be important.

4 Lessons and Open Issues

The virus incident taught many important lessons. It also
brought up many more difficult issues which need to be ad-
dressed in the future .

4.1 Lessons from the Community’s Reac-
tions

The chronology of events is interesting. The manner in
which the Internet community reacted to the virus attack
points out areas of concern or at least issues for future study.

� Connectivitywas important. Sites which disconnected
from the network at the first sign of trouble hurt them-
selves and the community. Not only could they not re-
port their experiences and findings, but they couldn’t
get timely bug fixes. Furthermore, other sites using

18This was the work of Don Becker of Harris Corporation.

14

them as mail relays were crippled, thus delaying deliv-
ery of important mail, such as Andy Sudduth’s Thurs-
day morning posting, until after the crisis had passed.
Sites like MIT and Berkeley were able to collaborate
in a meaningful manner because they never took them-
selves off the network.

� The ‘‘old boy network’’ worked. People called and
sent electronic mail to the people they knew and
trusted and much good communication happened.
This can’t be formalized but it did function quite well
in the face of the crisis.

� Late night authentication is an interesting problem.
How did you know that it really is MIT on the
phone? How did you know that Keith Bostic’s patch to
sendmail is really a fix and isn’t introducing a new
problem? Did Keith really send the fix or was it his
evil twin, Skippy?

� Whom do you call? If you need to talk to the man-
ager of the Ohio State University network at 3:00am
whom do you call? How many people can find that
information, and is the information up to date?

� Speaker phones and conference calling proved very
useful.

� How groups formed and who led them is a fascinating
topic for future study. Don Alvarez of the MIT Center
for Space Research presented his observations on this
at the NCSC meeting.

� Misinformation and illusions ran rampant. Mike
Muuss categorized several of these at the NCSC meet-
ing. Our spotting of a handshake withernie is but one
example.

� Tools were not as important as one would have ex-
pectd. Most of decompiling work was done manually
with no more tools than a disassembler (adb) and an
architecture manual. Based on its experience with PC
viruses, the NCSC feels that more sophisticated tools
must be developed. While this may be true for future
attacks, it was not the case for this attack.

� Source availability was important. All of the sites
which responded quickly and made progress in truly
understanding the virus had UNIX source code.

� The academic sites performed best. Government and
commercial sites lagged behind places like Berkeley
and MIT in figuring out what was going on and creat-
ing solutions.

� Managing the press was critical. We were not dis-
tracted by the press and were able to be quite pro-
ductive. The MIT News office did a fine job keeping
the press informed and out of the way. Batching the
numerous requests into one press conference helped
tremendously. The Berkeley group, among others, re-
ported that it was difficult to get work done with the
press constantly hounding them.

4.2 General Points for the Future

More general issues have popped to the surface because of
the virus. These include the following:

� Least Privilege. This basic security principle is fre-
quently ignored and this can result in disaster.

� ‘‘We have met the enemy and he is us.’’ The alleged
author of the virus has made contributions to the com-
puter security field and was by any definition an in-
sider; the attack did not come from an outside source
who obtained sensitive information, and restricting in-
formation such as source code would not have helped
prevent this incident.

� Diversity is good. Though the virus picked on the
most widespread operating system used on the Inter-
net and on the two most popular machine types, most
of the machines on the network were never in danger.
A wider variety of implementations is probably good,
not bad. There is a direct analogy with biological ge-
netic diversity to be made.

� ‘‘The cure shouldn’t be worse than the disease.’’
Chuck Cole made this point and Cliff Stoll also argued
that it may be more expensive to prevent such attacks
than it is to clean up after them. Backups are good. It
may be cheaper to restore from backups than to try to
figure out what damage an attacker has done[6].

� Defensesmustbe at the host level, not the network
level. Mike Muuss and Cliff Stoll have made this
point quite eloquently[6]. The network performed its
function perfectly and should not be faulted; the tragic
flaws were in several application programs. Attempts
to fix the network are misguided. Jeff Schiller likes to
use an analogy with the highway system: anybody can
drive up to your house and probably break into your
home, but that does not mean we should close down
the roads or put armed guards on the exit ramps.

� Logging information is important. Theinetd and
telnetd interaction logging the source of virus at-
tacks turned out to be a lucky break, but even so many
sites did not have enough logging information avail-
able to identify the source or times of infection. This

15

greatly hindered the responses, since people frequently
had to install new programs which logged more infor-
mation. On the other hand, logging information tends
to accumulate quickly and is rarely referenced. Thus
it is frequently automatically purged. If we log help-
ful information, but find it is quickly purged, we have
not improved the situtation much at all. Mike Muuss-
points out that frequently one can retrieve such infor-
mation from backups[6], but this is not always true.

� Denial of service attacks are easy. The Internet is
amazingly vulnerable to such attacks. These attacks
are quite difficult to prevent, but we could be much bet-
ter prepared to identify their sources than we are today.
For example, currently it is not hard to imagine writing
a program or set of programs which crash two-thirds
of the existing Sun Workstations or other machines
implementing Sun’s Network Filesystem (NFS). This
is serious since such machines are the most common
computers connected to the Internet. Also, the total
lack of authentication and authorization for network
level routing makes it possible for an ordinary user to
disruptcommunications for a large portionof the Inter-
net. Both tasks could be easily done in a manner which
makes tracking down the initiator extremely difficult,
if not impossible.

� A central security fix repository may be a good idea.
Vendorsmustparticipate. End users, who likely only
want to get their work done, must be educated about
the importance of installing security fixes.

� Knee-jerk reactions should be avoided. Openness and
free flow of information is the whole point of network-
ing, and funding agencies should not be encouraged to
do anything damaging to this withoutvery careful con-
sideration. Network connectivity proved its worth as
an aid to collaboration by playing an invaluable role in
the defense and analysis efforts during the crisis, de-
spite the sites which isolated themselves.

5 Acknowledgments

Manypeople contributed to our effort to take apart the virus.
We would like to thank them all for their help and insights
both during the immediate crisis and afterwards.

5.1 The MIT team

The MIT group effort encompassed many organizations
within the Institute. It included people from Project Athena,
theTelecommunications Network Group, the Student Infor-
mation Processing Board (SIPB), the Laboratory for Com-
puter Science, and the Media Laboratory.

The SIPB’s role is quite interesting. It is a volunteer stu-
dent organization that represents students on issues of the
MIT computing environment, does software development,
provides consulting to the community, and other miscel-
laneous tasks. Almost all the members of the MIT team
which took apart the virus were members of the SIPB, and
the SIPB office was the focus for early efforts at virus catch-
ing until people gathered in the Project Athena offices.

Mark W. Eichin (Athena and SIPB) and Stanley R. Za-
narotti (LCS and SIPB) led the team disassembling the virus
code. The team included Bill Sommerfeld (Athena/Apollo
Computer and SIPB), Ted Y. Ts’o (Athena and SIPB), Jon
Rochlis (Telecommunications Network Group and SIPB),
Ken Raeburn (Athena and SIPB), Hal Birkeland (Media
Laboratory), and John T. Kohl (Athena/DEC and SIPB).

Jeffrey I. Schiller (Campus Network Manager, Athena
Operations Manager, and SIPB) did a lot of work in trap-
ping the virus, setting up an isolated test suite, and dealing
with the media. Pascal Chesnais (Media Laboratory) was
one of the first at MIT to spot the virus. Ron Hoffmann
(Network Group) was one of the first to notice an MIT ma-
chine attacked by finger.

Tim Shepard (LCS) provided informationabout the prop-
agation of the virus, as well as large amounts of ‘‘netwatch’’
data and other technical help.

James D. Bruce (EECS Professor and Vice President for
Information Systems) and the MIT News Office did an ad-
mirable job of keeping the media manageable and letting us
get our work done.

5.2 The Berkeley Team

We communicated and exchanged code with Berkeley ex-
tensively throughout the morning of 4 November 1988. The
team there included Keith Bostic (Computer Systems Re-
search Group, University of California, Berkeley), Mike
Karels (Computer Systems Research Group, University of
California, Berkeley), Phil Lapsley (Experimental Comput-
ing Facility, University of California, Berkeley), Dave Pare
(FX Development, Inc.), Donn Seeley (University of Utah),
Chris Torek (University of Maryland), and Peter Yee (Ex-
perimental Computing Facility, University of California,
Berkeley).

5.3 Others

Numerous others across the country deserve thanks; many
of them worked directly or indirectly on the virus, and
helped coordinate the spread of information. Special thanks
should go to Gene Spafford (Purdue) for serving as a central
information point and providing key insight into the work-
ings of the virus. Don Becker (Harris Corporation) has pro-
vided the most readable decompilation of the virus which

16

we have seen to date. It was most helpful.
An attempt was made to provide a review copy of this

paper to all people mentioned by name. Most read a copy
and many provided useful corrections.

People who offered particularly valuable advice included
Judith Provost, Jennifer Steiner, Mary Vogt, Stan Zanarotti,
Jon Kamens, Marc Horowitz, Jenifer Tidwell, James Bruce,
Jerry Saltzer, Steve Dyer, Ron Hoffmann and many un-
named people from the SIPB Office. Any remaining flaws
in this paper are our fault, not theirs.

Special thanks to Bill Sommerfeld for providing the de-
scription of the finger attack and its discovery.

17

A The Program

This Appendix describes the virus program subroutine by
subroutine. For reference, the flow of information among
the subroutines is shown in Figure 3.

A.1 Names

The core of the virus is a pair of binary modules, one for
the VAX architecture and the other for the Sun architec-
ture. These are linkable modules, and thus have name lists
for their internal procedures. Many of the original names
are included here with the descriptions of the functions the
routines performed.

It is surprising that the names are included, and astonish-
ing that they are meaningful. Some simple techniques, such
as randomizing the procedure names, would have removed
a number of clues to the function of the virus.

A.2 main

The main module, the starting point of any C language pro-
gram, does some initialization, processes its command line,
and then goes off into the loop which organizes all of the
real work.

A.2.1 Initialization

The program first takes some steps to hide itself. It changes
the ‘‘zeroth’’ argument, which is the process name, tosh .
Thus, no matter how the program was invoked, it would
show up in the process table with the same name as the
Bourne Shell, a program which often runs legitimately.

The program also sets the maximum core dump size to
zero blocks. If the program crashed19 it would not leave
a core dump behind to help investigators. It also turns off
handling of write errors on pipes, which normally cause the
program to exit.

The next step is to read the clock, store the current time
in a local variable, and use that value to seed the random
number generator.

A.2.2 Command line argument processing

The virus program itself takes an optional argument-p
which must be followed by a decimal number, which seems
to be a process id of the parent which spawned it. It uses
this number later to kill that process, probably to ‘‘close the
door’’ behind it.

The rest of the command line arguments are ‘‘object
names’’. These are names of files it tries to load into its
19For example, the virus was originally compiled using 4.3BSD decla-

ration files. Under 4.2BSD, the alias name list did not exist, and code such
as the virus which assumes aliases are there can crash and dump core.

address space. If it can’t load one of them, it quits. If the
-p argument is given, it also deletes the object files, and
later tries to remove the disk image of running virus, as well
as the file/tmp/.dumb . (This file is not referenced any-
where else in the virus, so it is unclear why it is deleted.)

The program then tried a few further steps, exiting(‘‘bail-
ing out’’) if any of them failed:
� It checked that it had been given at least one object on

the command line.
� It checked to see if it had successfully loaded in the

objectl1.c .
If the ‘‘-p’’ argument was given, the program closes all

file descriptors, in case there are any connections open to
the parent.

The program then erases the text of the argument array, to
further obscure how it was started (perhaps to hide anything
if one were to get a core image of the running virus.)

It scans all of the network interfaces on the machine, gets
the flags and addresses of each interface. It tries to get the
point-to-point address of the interface, skipping the loop-
back address. It also stores the netmask for that network
[23].

Finally, it kills off the process id given with the ‘‘-p’’ op-
tion. It also changes the current process group, so that it
doesn’t die when the parent exits. Once this is cleaned up,
it falls into thedoit routine which performs the rest of the
work.

A.3 doit routine

This routine is where the program spends most of its time.

A.3.1 Initialization

Like the main routine, it seeds the random number generator
with the clock, and stores the clock value to later measure
how long the virus has been running on this system.

It then trieshg. If that fails, it trieshl. If that fails, it tries
ha.

It then tries to check if there is already a copy of the virus
running on this machine. Errors in this code contributed to
the large amounts of computer time taken up by the virus.
Specifically:
� On a one-in-seven chance, it won’t even try to test for

another virus.
� The first copy of the virus to run is the only one which

listens for others; if multiple infections occur ‘‘simul-
taneously’’ they will not ‘‘hear’’each other, and all but
one will fail to listen (see section A.12).

The remainder of the initialization routine seems de-
signed to send a single byte to address 128.32.137.13,
which isernie.berkeley.edu, on port 11357. This never hap-
pens, since the author used thesendtofunction on a TCP

18

waithit

(wait for infected client to respond)

Hit rexec

Host List User Name List

Phase 0

/etc/hosts.equiv/.rhosts

~/.forward ~/.rhosts

Phase 1

Phase 2

/etc/passwd

Guessed Passwords Phase 3 /usr/dict/words

Internal Words

Obvious Guesses

Hit rshHit finger Hit SMTP

if_init

Interface Table

rt_init

Routing Table

(netstat)Figure 3: The structure of the attacking engine.

19

stream connection, instead of a UDP datagram socket.20

We have no explanation for this; it only tries to send this
packet with a one in fifteen random chance.

A.3.2 Main loop

An infinite loop comprises the main active component of
the virus. It calls thecracksomeroutine21 which tries to
find some hosts that it can break in to. Then it waits 30
seconds, listening for other virus programs attempting to
break in, and tries to break into another batch of machines.

After this round of attacks, it forks, creating two copies of
the virus; the original (parent) dies, leaving the fresh copy.
The child copy has all of the information the parent had,
while not having the accumulated CPU usage of the parent.
It also has a new process id, making it hard to find.

Next, thehg, hl, andha routines search for machines to
infect (see Appendix A.5). The program sleeps for 2 min-
utes, and then checks to see if it has been running for more
than 12 hours, cleaning up some of the entries in the host
list if it has.

Finally, before repeating, it checks the global variable
pleasequit . If it is set,and if it has tried more than 10
words from its own dictionary against existing passwords,
it quits. Thus forcingpleasequit to be set in the sys-
tem libraries will do very little to stem the progress of this
virus22.

A.4 Cracking routines

This collection of routines is the ‘‘brain’’ of the virus.
cracksome, the main switch, chooses which of four strate-
gies to execute. It is would be the central point for adding
new strategies if the virus were to be further extended.
The virus works each strategy through completely, then
switches to the next one. Each pass through the cracking
routines only performs a small amount of work, but enough
state is remembered in each pass to continue the next time
around.

A.4.1 cracksome

The cracksomeroutine is the central switching routine of
the cracking code. It decides which of the cracking strate-
gies is actually exercised next. Again, note that this rou-
tine was named in the global symbol table. It could have
been given a confusing or random name, but it was actually
clearly labelled, which lends some credence to the idea that
the virus was released prematurely.

20If the author had been as careful with error checking here as he tried
to be elsewhere, he would have noted the error ‘‘socket not connected’’
every time this routine is invoked.
21This name was actually in the symbol table of the distributed binary!
22Although it was suggested very early [24].

A.4.2 Phase 0

The first phase of thecracksomeroutines reads through
the/etc/hosts.equiv file to find machine names that
would be likely targets. While this file indicates what hosts
the current machine trusts, it is fairly common to find sys-
tems where all machines in a cluster trust each other, and
at the very least it is likely that people with accounts on
this machine will have accounts on the other machines men-
tioned in/etc/hosts.equiv .

It also reads the/.rhosts file, which lists the set of
machines that this machine trusts root access from. Note
that it does not take advantage of the trust itself [25] but
merely uses the names as a list of additional machines to
attack. Often, system managers will deny read access to this
file to any user other than root itself, to avoid providing any
easy list of secondary targets that could be used to subvert
the machine; this practice would have prevented the virus
from discovering those names, although/.rhosts is very
often a subset of/etc/hosts.equiv .

The program then reads the entire local password file,
/etc/passwd . It uses this to find personal.forward
files, and reads them in search of names of other machines
it can attack. It also records the user name, encrypted
password, andGECOS information string, all of which
are stored in the/etc/passwd file. Once the program
scanned the entire file, it advanced to Phase 1.

A.4.3 Phase 1

This phase of the cracking code attacked passwords on the
local machine. It chose several likely passwords for each
user, which were then encrypted and compared against the
encryptions obtained in Phase 0 from/etc/passwd :
� No password at all.
� The user name itself.
� The user name appended to itself.
� The second of the comma separatedGECOSinforma-

tion fields, which is commonly a nickname.
� The remainder of the full name after the first name in

the GECOSfields, i.e. probably the last name, with
the first letter converted to lower case.

� This ‘‘last name’’ reversed.
All of these attacks are applied to fifty passwords at a

time from those collected in Phase 0. Once it had tried to
guess the passwords for all local accounts, it advanced to
Phase 2.

A.4.4 Phase 2

Phase 2 takes the internal word list distributed as part of
the virus (see Appendix B) and shuffles it. Then it takes
the words one at a time and decodes them (the high bit is
set on all of the characters to obscure them) and tries them

20

against all collected passwords. It maintains a global vari-
ablenextw as an index into this table. The main loop uses
this to preventpleasequit from causing the virus to exit
until at least ten of the words have been checked against all
of the encryptions in the collected list.

Again, when the word list is exhausted the virus advances
to Phase 3.

A.4.5 Phase 3

Phase 3 looks at the local/usr/dict/words file, a
24474 word list distributed with 4.3BSD (and other UNIX
systems) as a spelling dictionary. The words are stored in
this file one word per line. One word at a time is tried
against all encrypted passwords. If the word begins with
an upper case letter, the letter is converted to lower case
and the word is tried again.

When the dictionary runs out, the phase counter is again
advanced to 4 (thus no more password cracking is at-
tempted).

A.5 H routines

The ‘‘h routines’’ are a collection of routines with short
names, such ashg, ha, hi, andhl, which search for other
hosts to attack.

A.5.1 hg

Thehgroutine callsrt init (if it has not already been called)
to scan the routing table, and records all gateways except
the loopback address in a special list. It then tries a generic
attack routine to attack viarsh , finger , and SMTP. It
returns after the first successful attack.

A.5.2 ha

Theha routine goes through the gateway list and connects
to TCP port 23, the telnet port, looking for gateways which
are running telnet listeners. It randomizes the order of such
gateways and callshn(our name) with the network number
of each gateway. Theha returns afterhn reports that it has
succeeded broken into a host.

A.5.3 hl

Thehl routine iterates through all the addresses for the local
machine callinghnwith the network number for each one.
It returns ifhn indicates success in breaking into a host.

A.5.4 hi

Thehi routine goes through the internal host list (see sec-
tion A.4.2) and tries to attack each host viarsh , finger ,
and SMTP. It returns if when one host is infected.

A.5.5 hn

Thehnroutine(our name) followedhi takes a network num-
ber as an argument. Surprisingly it returns if the network
number supplied is the same as the network number of any
of the interfaces on the local machine. For Class A ad-
dresses it uses the Arpanet IMP convention to create pos-
sible addresses to attack (net.[1-8].0.[1-255]). For all other
networks it guesses hosts number one through 255 on that
network. It randomizes the order of this list of possible
hosts and tries to attack up to twenty of them usingrsh ,
finger , and SMTP. If a host does not accept connections
on TCP port 514, thersh port,hnwill not try to attack it.
If a host is successfully attackedhn returns.

A.5.6 Usage

The ‘‘h routines’’ are called in groups in the main loop; if
the first routine succeedes in finding a vulnerable host the
remaining routines are not called in the current pass. Each
routine returns after it finds one vulnerable host. Thehg
routine is always called first, which indicates the virus re-
ally wanted to infect gateway machines. Next comeshi
which tried to infect normal hosts found viacracksome. If
hi fails,hais called, which seemed to try breaking into hosts
with randomly guessed addresses on the far side of gate-
ways. This assumes that all the addresses for gateways had
been obtained (which is not trivial to verify from the con-
voluted code inrt init), and implies that the virus would
prefer to infect a gateway and from there reach out to the
gateway’s connected networks, rather than trying to hop the
gateway directly. Ifhg, hi, andhaall failed to infect a host,
thenhl is called which is similar toha but uses for local
interfaces for a source of networks.

It is not clear thathaandhl worked. Becausehn returns
if the address is local,hl appears to have no chance of suc-
ceeding. If alternate addresses for gateways are indeed ob-
tained by other parts of the virus thenha could work. But
if only the addresses in the routing table were used it could
not work, since by definition these addresses must be on
a directly connected network. Also, in our monitoring we
never detected an attack on a randomly generated address.
These routines do not seem to have been functional.

A.6 Attack routines

There are a collection of attack routines, all of which try to
obtain a Bourne Shell running on the targeted machine. See
Appendix A.7 for a description of thel1.c program, used
by all the attack routines.

21

A.6.1 hu1

Thehu1routine is called by the Phase 1 and Phase 3crack-
somesubroutines. Once a password for user name guessed
correctly, this routine is called with a host name read from
either the user’s.forward or .rhosts files. In order
to assume the user’s id it then tries to connect to the local
machine’srexec server using the guessed name and pass-
word. If successful it runs anrsh to the target machine,
trying to execute a Bourne Shell, which it uses to send over
and compile thel1.c infection program.

A.6.2 Hit SMTP

This routine make a connection to TCP port 25, the SMTP
port, of a remote machine and used it to take advantage of
the sendmail bug. It attempts to use the debug option to
makesendmail run a command (the ‘‘recipient’’ of the
message), which transfers thel1.c program included in
the body of the message.

A.6.3 Hit finger

The ‘‘hit finger’’ routine tries to make a connection to TCP
port 79, the finger port, of the remote machine. Then it
creates a ‘‘magic packet’’ which consists of
� A 400 byte ‘‘runway’’ of VAX ‘‘nop’’ instructions,

which can be executed harmlessly.
� A small piece of code which executes a Bourne Shell.
� A stack frame, with a return address which would

hopefully point into the code.
Note that the piece of code is VAX code, and the stack

frame is a VAX frame, in the wrong order for the Sun. Thus,
although the Sun finger daemon has the same bug as the
VAX one, this piece of code cannot exploit it.

The attack on the finger daemon is clearly a lysogenetic
‘‘viral’’ attack (see Section 1.2), since although a worm
doesn’t modify the host machine at all, the finger attack
does modify the running finger daemon process. The ‘‘in-
jected DNA’’ component of the virus contained the VAX
instructions shown in Figure 4.

The execvesystem call causes the current process to
be replaced with an invocation of the named program;
/bin/sh is the Bourne Shell, a UNIX command inter-
preter. In this case, the shell winds up running with its input
coming from, and its output going to, the network connec-
tion. The virus then sends over thel1.c bootstrap pro-
gram.

A.6.4 Hit rsh

This unlabeled routine triesrsh to the target host (assum-
ing it can get in as the current user). It tries three different
names for thersh binary,

� /usr/ucb/rsh
� /usr/bin/rsh
� /bin/rsh

If one of them succeeds, it tries to resynchronize (see Ap-
pendix A.8.1) the connection; if that doesn’t succeed within
thirty seconds it kills off the child process. If successful the
connection can then be used to launch thel1.c ‘‘grappling
hook’’ program at the victim.

Note that this infection method doesn’t specify a user
name to attack; if it gets into the remote account, it is be-
cause the user that the virus is runningas also has an account
on the other machine which trusts the originating machine.

A.6.5 Hit rexec

The hit rexec routine uses the remote execution system
which is similar torsh , but designed for use by programs.
It connects and sends the user name, the password, and
/bin/sh as the command to execute.

A.6.6 makemagic

This routine tries to make a telnet connection to each of the
available addresses for the current victim. It broke the con-
nections immediately, often producing error reports from
the telnet daemon, which were recorded, and provide some
of the earliest reports of attack attempts.23

If it succeedes in reaching the host, it creates a TCP lis-
tener on a random port number which the infected machine
would eventually connect back to.

A.7 Grappling Hook

A short program, namedl1.c , is the common grappling
hook that all of the attack routines use to pull over the rest
of the virus. It is robustly written, and fairly portable. It ran
on a number of machines which were neither VAX or Sun,
loading them down as well, but only making them periph-
eral victims of the virus.

The first thing it does is delete the binary it was running
from. It checks that it has three arguments (exiting if there
aren’t three of them). It closes all file descriptors and then
forks, exiting if the fork fails. If it succeeds, the parent ex-
its; this leaves no connection from the child to the infection
route.

Next, it creates a TCP connection back to the address
given as the first argument, and the port given as the second.
Then it sends over the magic number given as the third.
The text of each argument is erased immediately after it is
used. The stream connection is then reused as the program’s
standard input and output.

23On fast machines, such as the DEC VAX 3200, there may be no record
of these attacks, since the connection is handed off fast enough to satisfy
the daemon.

22

pushl $68732f push ’/sh<NUL>’
pushl $6e69622f push ’/bin’
movl sp,r10 save address of start of string
pushl $0 push 0 (arg 3 to execve)
pushl $0 push 0 (arg 2 to execve)
pushl r10 push string addr (arg 1 to execve)
pushl $3 push argument count
movl sp,ap set argument pointer
chmk $3b do "execve" kernel call.

Figure 4: VAX intructions for thefinger attack.

A loop reads in a length (as a network byte order 32-
bit integer) and then a filename. The file is unlinked and
opened for write, and then the file itself is read in (using the
number of bytes read in earlier.) On any error, all of the
files are unlinked. If the length read in is -1, the loop exits,
and a Bourne Shell is executed (replacing thel1 program,
and getting its input from the same source.)

A.8 Install Routines

There are a variety of routines used to actually move the
virus from one machine to the other. They deal with the
‘‘virus protocol’’ connection made by thel1.c injected
program or with the shell that it spawns.

A.8.1 resynch

Theresynchroutine sends commands to a remote shell, re-
questing that it echo back a specific randomly chosen num-
ber. It then waits a certain amount of time for a response.
This routine is used to indicate when the various subpro-
grams of the infection procedure have compiled or executed
and a Bourne Shell prompt is available again.

A.8.2 waithit

This routine does much of the high level work. It waits (up
to 2 minutes) for a return connection from a victim (which
has hadl1.c injected into it.) It then tries to read a magic
number (which had been previously sent to that victim as a
command line argument to thel1 program) and gives up
after ten seconds.

After the connection is established, all of the current ‘‘ob-
jects’’ in storage in the virus are fed down the connection
into the victim. Then it tries to resynchronize, and if it suc-
ceeds, sends down commands to
� set thePATHof the victim shell
� try to deletesh in the current directory (/usr/tmp)

� if the delete fails, pick a random name to use instead24

� scan the list of objects, looking for names ending in
.o

� link and run each of these, with the command line ar-
guments

� -p $$, where$$ is the process id of the victim
shell

� each object name
� resynchronize; if this fails, assume that the virus suc-

ceeded (since the-p option tells the virus to kill off
the parent shell) and set flag bit 1 of the host list entry
(the host list is detailed in section A.9).

� delete the compiled program, and go on to the next
object.

Thus, to add another machine type, the virus merely
needs to be started with a new object binary as a command
line option, which will then be propagated to the next in-
fected host and tried.

Note that the path used here wasPATH= bin:
/usr/bin: /usr/ucb which is certainly reason-
able on most systems. This protects systems with ‘‘un-
usual’’ filesystem layouts, and suggests that complete con-
sistency among systems makes them more vulnerable.

A.9 Host modules

These are a set of routines designed to collect names and
addresses of target hosts in a master list. Each entry con-
tains up to six addresses, up to twelve names, and a flags
field.

A.9.1 Name to host

This routine searches the host list for a given named host,
returns the list entry describing it, and optionally adds it to
the list if it isn’t there already.

24Since the delete command used (rm -f) did not remove directories,
creating a directory/usr/tmp/sh stoped the virus[26]. However, the
virus would still use CPU resources attempting to link the objects, even
though it couldn’t write to the output file (since it was a directory).

23

A.9.2 Address to host

This routine searches the host list for a given host address,
returns the list entry describing it, and optionally adds it to
the list if it isn’t there already.

A.9.3 Add address/name

These two routines added an address or a name to a host list
entry, checking to make sure that the address or name was
not already known.

A.9.4 Clean up table

This routine cycles through the host list, and removes any
hosts which only have flag bits 1 and 2 set (and clears those
bits.) Bit 1 is set when a resynchronize (inwaithit) fails,
probably indicating that this host ‘‘got lost’’. Bit 2 is set
when a named host has no addresses, or when several dif-
ferent attack attempts fail. Bit 3 is set when Phase 0 of the
crack routines successfully retrieves an address for the host.

A.9.5 Get addresses

This routine takes an entry in the host table and tries to fill
in the the gaps. It looks up an address for a name it has, or
looks up a name for the addresses it has. It also includes
any aliases it can find.

A.10 Object routines

These routines are what the system uses to pull all of its
pieces into memory when it starts (after the host has been
infected) and then to retrieve them to transmit to any host it
infects.

A.10.1 Load object

This routine opens a file, determines its length, allocating
the appropriate amount of memory, reads it in as one block,
decodes the block of memory (with XOR). If the object
name contains a comma, it moves past it and starts the name
there.

A.10.2 Get object by name

This routine returns a pointer to the requested object. This is
used to find the pieces to download when infecting another
host.

A.11 Other initialization routines

A.11.1 if init

This routine scans the array of network interfaces. It gets
the flags for each interface, and makes sure the interface

is UP and RUNNING (specific fields of the flag structure).
If the entry is a point to point type interface, the remote
address is saved and added to the host table. It then tries to
enter the router into the list of hosts to attack.

A.11.2 rt init

This routine runsnetstat -r -n as a subprocess. This
shows the routing table, with the addresses listed numer-
ically. It gives up after finding 500 gateways. It skips the
default route, as well as the loopback entry. It checks for re-
dundant entries, and checks to see if this address is already
an interface address. If not, it adds it to the list of gateways.

After the gateway list is collected, it shuffles it and enters
the addresses in the host table.

A.12 Interlock routines

The two routinescheckotherandothersleepare at the heart
of the excessive propagation of the virus. It is clear that the
author intended for the virus to detect that a machine was
already infected, and if so to skip it. The code is actually
fraught with timing flaws and design errors which lead it
to permit multiple infections, probably more often than the
designer intended25.

An active infection uses theothersleeproutine for two
purposes, first to sleep so that it doesn’t use much processor
time, and second to listen for requests from ‘‘incoming’’
viruses. The virus which is runningothersleepis referred to
as the ‘‘listener’’ and the virus which is runningcheckother
is referred to as the ‘‘tester’’.

A.12.1 Checkother

The tester tries to connect to port 23357 on the local ma-
chine (using the loopback address, 127.0.0.1) to see if it can
connect to a listener. If any errors occur during this check,
the virus assumes that no listener is present, and tries to be-
come a listener itself.

If the connection is successful, the checker sends a magic
number26, and listens (for up to 300 seconds) for a magic
number from the listener27. If the magic number is wrong,
the checker assumes it is being spoofed and continues to
run.

The checker then picks a random number, shifts it right
by three (Twing away the lower three bits) and sends it
to the listener. It expects a number back within ten sec-
onds, which it adds to the one sent. If this sum is even, the

25This behavior was noted by both looking at the code and by creating
a testbed setup, manually running a program that performs the checking
and listening functions.
26
87469716;886543110; 0416432278

27
14889816;134568810; 051042308

24

sender incrementspleasequit , which (as noted in sec-
tion A.3.2) does very little.

Once it has finished communicating (or failing to com-
municate) with the listener, the checker sleeps for five sec-
onds and tries to become a listener. It creates a TCP stream
socket, sets the socket options to indicate that it should al-
low multiple binds to that address (in case the listenerstill
hasn’t exited, perhaps?) and then binds the socket to port
23357, and listens on it (permitting a backlog of up to ten
pending connections.)

A.12.2 Othersleep

The othersleeproutine is run when the main body of the
virus wants to idle for a period of time. This was appar-
ently intended to help the virus ‘‘hide’’ so that it wouldn’t
use enough processor time to be noticed. While the main
program sleeps, the listener code waits to see if any check-
ers have appeared and queried for the existence of a listener,
as a simple ‘‘background task’’ of the main virus.

The routine first checks to see if it has been set up as a
listener; if not, it calls the normalsleepfunction to sleep for
the requested number of seconds, and returns.

If it is set up as a listener, it listens on the checking port
with a timeout. If it times out, it returns, otherwise it deals
with the connection and subtracts the elapsed real time from
the time out value.

The body of the listener ‘‘accepts’’ the connection, and
sends a magic number to the checker. It then listens (for up
to 10 seconds) for the checker’s magic number, and picks a
random number. It shifts the random number right by three,
discarding the lower bits, and sends it up to the checker; it
then listens (for up to 10 seconds) for a random number
from the checker. If any of these steps fail, the connection
is closed and the checker is ignored.

Once the exchanges have occurred, the address of the in-
coming connection is compared with the loopback address.
If it is not from the loopback address, the attempt is ignored.
If it is, then if the sum of the exchanged random numbers is
odd, the listener incrementspleasequit (with little ef-
fect, as noted in section A.3.2) and closes the listener con-
nection.

B Built in dictionary

432 words were included:

aaa academia aerobics
airplane albany albatross
albert alex alexander
algebra aliases alphabet
ama amorphous analog
anchor andromache animals
answer anthropogenic anvils

anything aria ariadne
arrow arthur athena
atmosphere aztecs azure
bacchus bailey banana
bananas bandit banks
barber baritone bass
bassoon batman beater
beauty beethoven beloved
benz beowulf berkeley
berliner beryl beverly
bicameral bob brenda
brian bridget broadway
bumbling burgess campanile
cantor cardinal carmen
carolina caroline cascades
castle cat cayuga
celtics cerulean change
charles charming charon
chester cigar classic
clusters coffee coke
collins commrades computer
condo cookie cooper
cornelius couscous creation
creosote cretin daemon
dancer daniel danny
dave december defoe
deluge desperate develop
dieter digital discovery
disney dog drought
duncan eager easier
edges edinburgh edwin
edwina egghead eiderdown
eileen einstein elephant
elizabeth ellen emerald
engine engineer enterprise
enzyme ersatz establish
estate euclid evelyn
extension fairway felicia
fender fermat fidelity
finite fishers flakes
float flower flowers
foolproof football foresight
format forsythe fourier
fred friend frighten
fun fungible gabriel
gardner garfield gauss
george gertrude ginger
glacier gnu golfer
gorgeous gorges gosling
gouge graham gryphon
guest guitar gumption
guntis hacker hamlet
handily happening harmony

25

harold harvey hebrides
heinlein hello help
herbert hiawatha hibernia
honey horse horus
hutchins imbroglio imperial
include ingres inna
innocuous irishman isis
japan jessica jester
jixian johnny joseph
joshua judith juggle
julia kathleen kermit
kernel kirkland knight
ladle lambda lamination
larkin larry lazarus
lebesgue lee leland
leroy lewis light
lisa louis lynne
macintosh mack maggot
magic malcolm mark
markus marty marvin
master maurice mellon
merlin mets michael
michelle mike minimum
minsky moguls moose
morley mozart nancy
napoleon nepenthe ness
network newton next
noxious nutrition nyquist
oceanography ocelot olivetti
olivia oracle orca
orwell osiris outlaw
oxford pacific painless
pakistan pam papers
password patricia penguin
peoria percolate persimmon
persona pete peter
philip phoenix pierre
pizza plover plymouth
polynomial pondering pork
poster praise precious
prelude prince princeton
protect protozoa pumpkin
puneet puppet rabbit
rachmaninoff rainbow raindrop
raleigh random rascal
really rebecca remote
rick ripple robotics
rochester rolex romano
ronald rosebud rosemary
roses ruben rules
ruth sal saxon
scamper scheme scott
scotty secret sensor

serenity sharks sharon
sheffield sheldon shiva
shivers shuttle signature
simon simple singer
single smile smiles
smooch smother snatch
snoopy soap socrates
sossina sparrows spit
spring springer squires
strangle stratford stuttgart
subway success summer
super superstage support
supported surfer suzanne
swearer symmetry tangerine
tape target tarragon
taylor telephone temptation
thailand tiger toggle
tomato topography tortoise
toyota trails trivial
trombone tubas tuttle
umesh unhappy unicorn
unknown urchin utility
vasant vertigo vicky
village virginia warren
water weenie whatnot
whiting whitney will
william williamsburg willie
winston wisconsin wizard
wombat woodwind wormwood
yacov yang yellowstone
yosemite zap zimmerman

C Cast of Characters

This is an alphabetical list of all the people mentioned in
section 3, their network addresses, and affiliations.

Don Alvarez<boomer@space.mit.edu>
MIT Center for Space Research

Richard Basch<probe@athena.mit.edu>
MIT Athena and SIPB

Don Becker<becker@trantor.harris-atd.com>
Harris Corporation and MIT SIPB.

Matt Bishop<bishop@bear.dartmouth.edu>
Dartmouth University

Hal Birkeland<hkbirke@athena.mit.edu>
MIT Media Laboratory

Keith Bostic<bostic@okeeffe.berkeley.edu>

26

University of California, Berkeley

Russell Brand<brand@lll-crg.llnl.gov>
Lawrence Livermore National Laboratory

James D. Bruce<jdb@delphi.mit.edu>
MIT Information Systems

John Bruner<jdb@mordor.s1.gov>
Lawrence Livermore National Laboratory

Liudvikas Bukys<bukys@cs.rochester.edu>
University of Rochester

Chuck Cole<cole@lll-crg.llnl.gov>
Lawrence Livermore National Laboratory

Pascal Chesnais<lacsap@media-lab.media.mit.edu>
MIT Media Laboratory

Jean Diaz<ambar@athena.mit.edu>
Oracle Corporation and MIT SIPB

Dave Edwards<dle@sri.com>
SRI, International

Mark Eichin<eichin@athena.mit.edu>
MIT Athena and SIPB

Kent England<kwe@bu-cs.bu.edu>
Boston University

Paul Flaherty<paulf@jessica.stanford.edu>
Stanford University

Jim Fulton<jim@expo.lcs.mit.edu>
MIT X Consortium

Robert French<rfrench@athena.mit.edu>
MIT SIPB and Project Athena

Dan Geer<geer@athena.mit.edu>
MIT Project Athena

Paul Graham<pg@harvard.edu>
Harvard University

Chris Hanson<cph@zurich.ai.mit.edu>
MIT AI Laboratory

Sergio Heker<heker@jvnca.csc.org>
John Von Neumann National Supercomputer Center

Ray Hirschfeld<ray@math.mit.edu>
MIT Math Department/AI Laboratory

Ron Hoffmann<hoffmann@bitsy.mit.edu>
MIT Telecommunications Network Group

Jon Kamens<jik@athena.mit.edu>
MIT Project Athena and SIPB

Mike Karels<karels@ucbarpa.berkeley.edu>
University of California, Berkeley

John Kohl<jtkohl@athena.mit.edu>
Digital Equipment Corporation, MIT Athena and SIPB

Rich Kulawiec<rsk@mace.cc.purdue.edu>
Purdue

Phil Lapsley<phil@berkeley.edu>
University of California, Berkeley

Milo Medin<medin@nsipo.nasa.gov>
NASA Ames

Steve Miller<steve@umiacs.umd.edu>
University of Maryland

Russ Mundy<mundy@beast.ddn.mil>
Defense Communications Agency

Mike Muuss<mike@brl.mil>
Ballistic Research Laboratory

Eugene Myers<EDMyers@dockmaster.arpa>
National Computer Security Center

Peter Neumann<neumann@csl.sri.com>
SRI International

Mike Patton<map@lcs.mit.edu>
MIT LCS

Kurt Pires<kjpires@berkeley.edu>
University of California, Berkeley

Mark Reinhold<mbr@lcs.mit.edu>
MIT Laboratory of Computer Science

Jon Rochlis<jon@bitsy.mit.edu>
MIT Telecommunications Network Group and SIPB

Miek Rowan<mtr@mace.cc.purdue.edu>
Purdue University

27

Jerry Saltzer<Saltzer@athena.mit.edu>
MIT Laboratory of Computer Science and Project Athena

Jeff Schiller<jis@bitsy.mit.edu>
MIT Telecommunications Network Group, Athena, and
SIPB

Mike Shanzer<shanzer@athena.mit.edu>
MIT Project Athena

Tim Shepard<shep@ptt.lcs.mit.edu>
MIT Laboratory of Computer Science

Bill Sommerfeld<wesommer@athena.mit.edu>
Apollo Computer, MIT Athena and SIPB

Gene Spafford<spaf@cs.purdue.edu>
Purdue University

Mike Spitzer<mjs@mentor.cc.purdue.edu>
Purdue University

Cliff Stoll <cliff@cfa200.harvard.edu>
Harvard University

Andy Sudduth<sudduth@harvard.edu>
Harvard University

Ted Ts’o<tytso@athena.mit.edu>
MIT Athena and SIPB

Edward Wang<edward@berkeley.edu>
University of California, Berkeley

Peter Yee<yee@ames.arc.nasa.gov>
NASA Ames

Stan Zanarotti<srz@lcs.mit.edu>
MIT Laboratory of Computer Science and SIPB

References

[1] R. Hinden, J. Haverty, and A. Sheltzer, ‘‘The DARPA
Internet: Interconnecting Heterogeneous Computer
Networks with Gateways,’’IEEE Computer Maga-
zine, vol. 16, num. 9, pp. 38–48, September 1983.

[2] J. S. Quarterman and J. C. Hoskins, ‘‘Notable Com-
puter Networks,’’ inCommunications of the ACM,
vol. 29, num. 10, pp. 932–971, October 1986.

[3] S. E. Luria, S. J. Gould, and S. Singer,A View of Life.
Menlo Park, California: Benjamin/Cummings Pub-
lishing Company, Inc., 1981.

[4] J. Watsonet al., Molecular Biology of the Gene.
Menlo Park, California: Benjamin/Cummings Pub-
lishing Company, Inc., 1987.

[5] G. G. Simpson and W. S. Beck,Life: An Introduction
to Biology. New York, New York: Harcourt, Brace
and Ward, Inc., 1965.

[6] L. Castro et al., ‘‘Post Mortem of 3 November
ARPANET/MILNET Attack.’’ National Computer
Security Center, Ft. Meade MD, 8 November 1988.

[7] P. J. Denning, ‘‘Computer Viruses,’’American Scien-
tist, vol. 766, pp. 236–238, May-June 1988.

[8] D. Seeley, ‘‘A Tour of the Worm,’’ inUSENIX Associ-
ation Winter Conference 1989 Proceedings, pp. 287–
304, January 1989.

[9] E. H. Spafford, ‘‘The Internet Worm Program: An
Analysis,’’ ACM SIGCOM, vol. 19, January 1989.

[10] K. Harrenstien, ‘‘NAME/FINGER Protocol Proto-
col,’’ Request For Comments NIC/RFC 742, Network
Working Group, USC ISI, Novemeber 1977.

[11] J. Markoff, ‘‘Computer Snarl: A ‘Back Door’ Ajar,’’
New York Times, p. B10, 7 November 1988.

[12] J. B. Postel, ‘‘Simple Mail Transfer Protocol,’’ Re-
quest For Comments NIC/RFC 821, Network Work-
ing Group, USC ISI, August 1982.

[13] S. Bellovin, ‘‘The worm and the debug option,’’ in
Forum on Risks to the Public in Computers and Re-
lated Systems, vol. 7, num. 74, ACM Committee on
Computers and Public Policy, 10 November 1988.

[14] J. Collyer, ‘‘Risks of unchecked input in C programs,’’
in Forum on Risks to the Public in Computers and Re-
lated Systems, vol. 7, num. 74, ACM Committee on
Computers and Public Policy, 10 November 1988.

[15] J. Saltzer and M. Schroeder, ‘‘The Protection of Infor-
mation in Computer Systems,’’ inProc. IEEE, vol. 63,
num. 9, pp. 1278–1308, IEEE, September 1975.

[16] J. Steiner, C. Neuman, and J. Schiller, ‘‘Kerberos: An
Authentication Service for Open Network Systems,’’
in USENIX Association Winter Conference 1988 Pro-
ceedings, pp. 191–202, February 1988.

[17] M. R. Horton, ‘‘How to Read the Network News,’’
UNIX User’s Supplementary Documents, April 1986.

28

[18] P. Mockapetris, ‘‘Domain Names - Concepts And
Facilities,’’ Request For Comments NIC/RFC 1034,
Network Working Group, USC ISI, November 1987.

[19] J. Markoff, ‘‘Author of Computer ‘Virus’ Is Son of
U.S. Electronic Security Expert,’’New York Times,
p. A1, 5 November 1988.

[20] P. G. Neumann, ed.,Forum on Risks to the Public
in Computers and Related Systems, vol. 7, num. 69,
ACM Committee on Computers and Public Policy, 3
November 1988.

[21] ???, ‘‘College Whiz ‘‘Put Virus in Computers’’,’’
Boston Herald, p. 1, 5 November 1988.

[22] J. Markoff, ‘‘U.S. Is Moving to Restrict Access To
Facts About Computer Virus,’’New York Times,
p. A28, 11 November 1988.

[23] J. Mogul and J. B. Postel, ‘‘Internet Standard Subnet-
ting Procedure,’’ Request For Comments NIC/RFC
950, Network WorkingGroup, USC ISI, August 1985.

[24] G. Spafford, ‘‘A cure!!!!!,’’ in Forum on Risks to
the Public in Computers and Related Systems, vol. 7,
num. 70, ACM Committee on Computers and Public
Policy, 3 November 1988.

[25] R. W. Baldwin,Rule Based Analysis of Computer Se-
curity. PhD thesis, MIT EE, June 1987.

[26] G. Spafford, ‘‘A worm ‘‘condom’’,’’ in Forum on
Risks to the Public in Computers and Related Systems,
vol. 7, num. 70, ACM Committee on Computers and
Public Policy, 3 November 1988.

29

