
Scheduling Instructions with Uncertain

Latencies in Asynchronous Architectures

D. K. Arvind and S. Sotelo-Salazar

Department of Computer Science, The University of Edinburgh,
May�eld Road, Edinburgh EH9 3JZ, Scotland.

Abstract. This paper addresses the problem of scheduling instructions
in micronet-based asynchronous processors (MAP), in which the laten-

cies of the instructions are not precisely known. A PTD scheduler is

proposed which minimises true dependencies, and results are compared
with two list schedulers - the Gibbons and Muchnick scheduler, and a

variation of the Balanced scheduler. The PTD scheduler has a lower

time complexity and produces better quality schedules than the other
two when applied to twenty-three loop- and control-intensive benchmark

programs.

1 Introduction

There has been a revival of interest in the use of asynchrony, albeit in a restricted
form known as self-timing, in the design of processor architectures. Asynchron-
ous circuits o�er some distinct advantages. Their power consumption is generally
much lower compared to their synchronous equivalent. This is because at any
time only parts of the asynchronous system are active as required, with the rest
remaining in a quiescent state. Self-timed systems allow a modular approach to
processor design whereby parts can be added and deleted with little impact on
the rest of the system. These systems are also robust to environmental changes.

The feature which is of most interest to our work and which was �rst re-
cognised in the Micronet model [1] is that asynchrony o�ers scope for �ne-grain
concurrency in the processor architecture. The micronet model exposes this fea-
ture naturally, and asynchronous architectures based on this model are better
able to exploit instruction-level parallelism.

A micronet-based architecture is viewed as a network of typed functional
units. These units operate concurrently and communicate asynchronously with
the rest of the architecture. The functional units themselves can be described
at di�erent levels of abstraction. In this paper the architecture is composed of
the following functional unit types: one or more Arithmetic Unit (AU), a Logic
Unit (LU), a Memory Unit (MU) and a Branch Unit (BU).

The issue and execution of an instruction consist of a sequence of micro-
operations involving the Issue Unit (IU), the Register Bank, and the appropriate
functional unit. An instruction is issued when both its operands are available.
Once the instruction has been issued, it runs to completion unless it is stalled

due to contention for resources in the trajectory of the instruction at any one
of these points: the read ports, the functional unit, the write-back port. The
micronet model enables concurrent execution of the micro-operations of the dif-
ferent instructions in ight, and minimises the costs of instruction stalls due to
resource contentions. The latency of the instruction depends on a number of
factors: its type, the data on which it operates, and the contention for resources
which depends on the mix of instructions.

This paper proposes a relatively inexpensive method for scheduling instruc-
tions within the basic block. The objective of the scheduler is to ensure the rapid
issue of independent instructions, thereby minimising the number of stalls of the
issue unit, and in reducing the contention for the functional units by enabling in-
structions of di�erent types to be in ight at the same time. This is achieved by
assigning penalties to data dependencies and successive instructions of the same
type, and transforming the schedule by moving instructions to reduce the pen-
alties. This results in a schedule in which dependent instructions are separated,
and independent instructions of di�erent types are issued in succession.

The next section describes the traditional list scheduling algorithms such as
Gibbons and Muchnick and the Balanced schedulers.

2 Traditional scheduling heuristics

2.1 The Gibbons and Muchnick (GM) scheduler

This is a well-known example of a list scheduling algorithm proposed originally
for scheduling instructions in pipelined architectures [2]. The algorithm selects
the instructions to be scheduled from a directed acyclic graph, beginning at
the roots. The instructions are selected for scheduling if all their immediate
predecessors have been scheduled. These ready instructions are prioritised on the
followingbasis: if possible, an instruction is scheduled that will not interlock with
the one just scheduled; given a choice, an instruction will be scheduled which is
most likely to cause interlocks with instructions after it. The complexity in the
absence of any lookahead in the instructions is �(n2) , where n is the number of
instructions in a basic block.

2.2 The Balanced scheduler

The Balanced scheduler [3] was devised to take account of unpredictable memory
access latencies. The idea is to compute weights for load instructions based on
the number of available independent instructions. The instructions are scheduled
as in a traditional list scheduler with independent instructions being distributed
behind loads to bu�er for unpredictable memory accesses. This idea is extended
beyond the load instruction to all the instructions in the MAP architecture. The
priority for ready instructions is based on a weighted sum of values derived from
MAP tailored heuristics - whether the instruction uses the same resources as the
previous scheduled one; the number of immediate successors of the instruction;

the length of the longest path from the instruction to the leaves of the DAG;
and the number of source registers which are freed should the instruction be
scheduled which e�ectively takes account of the register pressure.

3 The \Penalise True Dependencies" (PTD) scheduler

The essence of this heuristic is to identify true data and resource dependencies
and re-order, where possible, the instructions such that their detrimental e�ect
is reduced. The schedule is allocated a penalty measure based on the number
and type of these dependencies. A true consecutive data dependency is penalised
by one which is treated as the base case. If the dependency is with a branch or
load instruction then it is penalised more severely. The actual value depends on
the relative latencies of the functional units as shown in Table 1.

Instructions with resource dependencies are treated in a similar manner. If
there are say p functional units of Type A, q units of Type B and r units of Type
C, then a sequence containing more than p consecutive instructions of Type A, or
q of Type B, or r of Type C will incur penalties. This assumes that the latencies
of the three types of FUs are approximately the same; the run-length of the
instructions can be suitably amended to take account of di�erent latencies. The
algorithm to derive this measure has a complexity of �(n).

Cases of Consecutive Separated
dependencies instructions by one inst.

True dependency
with a load inst. 3 1

True dependency
with a branch inst. 2 0

Resource dependency
within mem. inst. 1 0

Normal true
dependencies 1 0

Table 1. Table of penalties for true data dependencies.

We next demonstrate the correlation between the penalty measure consid-
ering only the true data dependencies and the makespans of the schedules for
the program in Figure 1. The target asynchronous architecture has three types
of functional units: an arithmetic unit (AU), logic unit (LU) and the memory
unit (MU). The latency values for the units ranged over an interval, as shown in
Table 2, with a Gaussian distribution. The results from a stochastic simulator
which exhaustively simulated all the schedules (24,192) and averaged the results
over 20 runs are shown in Figure 2. This result is representative of simulations
of other programs with di�erent spread of latencies. We can observe the trend
that the penalty measure increases in step with the makespans of the schedules.
This should ideally be a strict monotonic function, but the overlaps between the

schedules of neighbouring penalties are tolerable for the heuristic approach. A
scheduler based on minimising the penalty measure is introduced in the next
section.

L4.main:

muli $13,$9,4

la $14,$29,0

main() { addu $15,$14,$13

muli $24,$9,4

la $25,$29,0

int i, j, n = 10; addu $11,$25,$24

int x[10]; lw $12,$11,0

muli $13,$10,4

for (i = 0; i < n; i++) la $14,$29,0

for (j = 0; j < n; j++) addu $24,$14,$13

x[i] = x[i] * x[j]; lw $25,$24,0

mul $11,$12,$25

sw $11,$15,0

} addui $10,$10,1

slt $12,$10,$8

bt $12,L4.main

Figure 1. C and MAP assembly code from our example.

Component Minimum Maximum
type latency latency

Issue Unit (IU) 1.00 ns 2.00 ns

Input buses 2.00 ns 4.00 ns

Output buses 2.00 ns 4.00 ns

Arithmetic Unit (AU) 4.00 ns 8.50 ns

Logical Unit (LU) 2.00 ns 7.00 ns

Memory Unit (MU) 10.00 ns 20.00 ns

Table 2. Latencies values for the target architecture.

3.1 The PTD scheduler

The PTD scheduler works in two phases: in the �rst phase the contention for
resources is minimised, and in the second phase consecutive data dependent
instructions are separated.

In the �rst phase, the types of consecutive instructions are compared and
instructions are moved, where possible, so that the overall penalty measure is
reduced, such that the number of consecutive instructions of the same type is
no greater than the number of functional units of that type.

Figure 2. Execution distribution for the example.

In the second phase, the schedule is again scanned from start to �nish,
to identify consecutive data dependencies, and independent instructions are
sandwiched in between them so that the overall penalty measure is reduced
to zero or cannot be reduced any further due to the lack of suitable instruc-
tions. The details of the PTD scheduler are shown in Figure 3. The functions
PTD arrange left() and PTD arrange right() traverse the schedule in both
directions in search of independent instructions for insertion immediately after
the penalised one. Two transformations are employed: a swap operation and a
move ahead operation and their use is illustrated in the following example.

Let l;m; n and o represent consecutive instructions in a schedule with a data
dependency between n and o. This is represented by n ! o. The conditions
for performing a swap(m;n) transformation which eliminates (or reduces) the
penalty to o, are the following:

{ m k n (m is independent of n),
{ m 6! o (not producing a penalty) and
{ l 6! n

If the penalties go beyond consecutive instructions then in order to ensure

that the penalty measure will be reduced after the swap, the necessary condition
is that the sum of penalties before the movement is greater than the measure
after the transformation is made.

The conditions for performing a move ahead(x; n) (moves x ahead of n) to
eliminate (or reduce) the penalty to o, are the following:

{ x k a; ::: ; x k l; x k m; x k n ,
{ x 6! o and
{ x

�1 6! x+1 where x
�1 and x+1 are the instructions previous and following

x, respectively.

void PTD_second_phase(dagnodes *root) {

measure = PTD_measure(root, second_phase);

if (measure > 0)

do {

node = root;

last_measure = measure;

while (node != NULL) {

if (node -> PTD.penalised > 0)

PTD_arrange_left (node);

if (node -> PTD.penalised > 0)

PTD_arrange_right(node);

node = node -> next;

}

measure = PTD_measure(root, second_phase);

} while (measure < last_measure && measure > 0);

}

Figure 3. The PTD scheduling algorithm - Phase 2.

Again to generalise the rules to allow a move ahead, the sum of penalties
before the insertion must be greater than the total number of penalties after the
instruction has moved.

The conditions just outlined apply for the PTD arrange left() function
which examines the left-hand side of the penalised instruction. The analogous
conditions apply for the PTD arrange right() function but have been omitted
for the sake of brevity. These conditions are su�cient to preserve the semantics
of the program and reduce the PTD measure.

There will be cases where the only way to decrease the PTD measure of a
schedule would be to replace a high penalty, i.e. load from memory, with a less
expensive one, such as a \move register" instruction. So in terms of the penalty,
one of 3 is reduced to 2 by moving an o�ending instruction, but the goal of
reducing the overall measure is still accomplished.

The complexity of the PTD scheduler is �(n e) where e is the number of
penalties in the schedule. The worst case is one in which the schedule has at
most n�1 consecutive dependencies (a pure sequential code) giving a complexity
of �(n2) and the best case is �(n). The linear-time complexity for the PTD
scheduler is better than the �(n2) for the list scheduler [2] and �(n2 � n) 1 for
the balanced scheduler [3].

4 Results

We next compare the quality of schedules produced by the Balanced, Gibbons
and Muchnick (GM) and the PTD schedulers for a range of benchmarks which

1
� is the inverse of the Ackerman function.

represent both loop-intensive (Livermore loops) and control-intensive categories
of programs. These were compiled on the SUIF Compiler for the MAP tar-
get, but without any MAP-speci�c optimisations, and provided the same base
schedule for the three schedulers under comparison.

The schedules were simulated on a discrete-event model of the MAP archi-
tecture. An architecture �le describes the functionality and interconnection,
and the spread of latencies as shown in Table 2. The distribution of latencies
were chosen to best reect the behaviour of the functional unit. The bimodal
distribution for the Memory Unit captures the behaviour due to cache hits and
misses. The distribution of the latencies for the Arithmetic Unit is based on the
graph in Figure 4 in [4], and the distribution is uniform for the Logic Unit.

The simulation results presented in Figure 4, represent the average of �ve
simulation runs for each program. They represent the percentage improvement
with respect to the base case, i.e. the SUIF compiler output. The PTD scheduler
outperforms the other two schedulers on both the control-intensive and loop-
intensive programs.

When the number of AUs is increased from one to two (Fig. 5), we see a
marked improvement in the schedules, but this tapers o� when the AUs are
increased further. This could be improved upon by scheduling instructions bey-
ond the basic blocks. The favourable run-time complexity of the PTD algorithm
makes this a practical proposition.

Figure 4. Average improvement for the whole set of benchmarks.

5 Conclusions

The PTD scheduler provides a simple yet e�ective method for scheduling in-
structions within basic blocks for programs running on MAP architectures. It
has a better time complexity than the other two well-known list schedulers, and

Figure 5. Ratio between the 1 AU and the other con�gurations.

the quality of the PTD schedules are better for a range of control- and loop-
intensive benchmarks. The method reduces the stalls of the Issue Unit due to
true data dependencies between instructions and enables better utilisation of
the functional units by reducing the resource contention between instructions.
The performance of the scheduler was investigated when the number of Arith-
metic Units was scaled from 1 to 4. Future work will investigate the scheduling
of instructions beyond the basic block boundaries for better utilisation as the
functional units are scaled.

Acknowledgements

We would like to thank the members of the MAP group for useful discussions.
S. Sotelo-Salazar was supported by a postgraduate studentship from the Science
and Technology National Counsel in Mexico (CONACYT).

References

1. D. K. Arvind and V. E. F. Rebello. Instruction-level parallelism in asyn-
chronous processor architectures. Proc. 3rd. International Workshop on

Algorithms and Parallel VLSI Architectures, Leuven, Belgium, August 1994,
pp. 203-215.

2. P. B. Gibbons and S. S. Muchnick. E�cient instruction scheduling for a

pipelined architecture. Proc. SIGPLAN 1986 Symposium on Compiler Con-

struction, SIGPLAN Notices, 21(7), July 1986, pp. 11-16.
3. D. R. Kerns and S. J. Eggers. Balanced scheduling: Instruction scheduling

when memory latency is uncertain. In ACM SIGPLAN 1993 Conference

on Programming Language Design and Implementation, SIGPLAN Notices,
28(6), June 1993, pp. 278-289.

4. D. J. Kinniment. An evaluation of asynchronous addition. IEEE Trans-

actions on Very Large Scale Integration (VLSI) systems, March 1996, pp.
137-140.

