
Static Analysis and Scheduling for

Asynchronous Processor Architectures

Thesis Proposal

Salvador Sotelo Salazar

September 27, 1996

Abstract

This work addresses the problem of compiler optimisations for ILP

in multiple-issue asynchronous architectures. Instruction scheduling

for a Micronet-based asynchronous target presents interesting chal-

lenges. First, the model of the underlying target is more complex: the

functional units have latencies which ranges over an interval. Secondly,

the dynamic behaviour of the asynchronous architecture makes it im-

possible to consistently predict the order of execution. Finally, the

presence of several issue units implies the use of aggressive methods to

increase ILP.

This thesis proposal presents some ideas for identifying good sched-

ules and proposes future work in this area.
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Chapter 1

Introduction

Asynchronous architectures di�er from their synchronous counterpart in

that the central control unit in the processor does not have a clock to syn-

chronize the di�erent stages. The method that asynchronous architectures

use to control the ow of instructions along the datapath is usually a hand-

shake that \communicates" between stages in the pipeline.

In particular, the datapath of MAP (Micronet-based Asynchronous Pro-

cessor) architectures is modelled as a network of functional units (entities)

that communicate with each other asynchronously [2]. This model shows

�ne grain concurrency -both spatial and temporal- so each instruction takes

the necessary stages for its execution and only for the time needed. In the

synchronous world, the instructions have to go through all the stages and

even if they complete one stage sooner they have to wait for the next cycle

to start another operation, keeping that resource idle.

It has been shown that reordering the instructions of a program in a

RISC processor is e�ective in improving performances [21][12][14][17]. The

reason for rearranging the order of the instructions in a code is to exploit

the bene�ts of the pipeline and avoid stalls. This is achieved because the

compiler has a precise model about the rate of execution of instructions.

This determinism in synchronous RISC processors has helped the scheduling

theory to substantially improve execution times [26].

However, in the asynchronous approach this determinism is not valid,

therefore the way to schedule a program in a scalar processor is a large

�eld for research. For instance, the di�culties in predicting the MAP's

behaviour comes from the variations in the latencies and the possible out-

of-order execution. The scheduling research done by the community has

deeply considered the uniformity of the execution rate in high performance

synchronous processors, so most of the work has to be reappraised and

adapted, if possible, to the asynchronous approach in MAP.

The importance of Instruction-level Parallelism (ILP) in the code is a

well known attribute in the scheduling theory, the more independent in-
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structions we have, the more chances there are to allocate them in free

units, and therefore avoid stalls. Eventually, the semantic content of a pro-

gram destined to be executed in a scalar processor is quite sequential, even

though there are some instructions that stay independent. It is our work to

sort out the best way to rearrange the instructions before putting them in

the �nal stream before execution.

A way to measure how much concurrency (ILP) is in a program would

help to know how \concurrent" that program is (depending on its nature)

and therefore to know its bound. This is important due to the fact that if

a control intensive program shows a \low" measure then we could expect

slight improvements after scheduling it.

In order to know how many concurrent instructions we can get from a

source code before trying any scheduling technique, we need an e�ective way

of measuring the concurrency in the instructions. The main goal is to make

some static analysis in the code to help us see the concurrent properties on it

and from these make conclusions and take decisions to the former scheduler.

This thesis proposal presents the work conducted in the static analysis

of programs. Firstly, we examine the concurrency measure for distributed

computations [5] and extend the work for a scalar uniprocessor. Secondly,

we propose a static and inexpensive method to classify the way a code has

been scheduled, and evaluate its goodness after simulating it. Next, we show

preliminary results from the proposed technique and its performance in a

real scheduler. Finally, we establish the di�erent paths to follow and future

work for the realisation of a scheduler for MAP.
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Chapter 2

Concurrency Measure

2.1 Background Theory

The method used to compute the concurrency measure in a code is pro-

posed in [5]. It uses the antichain lattice of the partial order to model the

distributed execution. The principal feature over other measures is that the

measure can be computed for individual events.

In this chapter we describe the necessary framework in which the con-

currency measure has been de�ned. Then we mention the considerations

taken, as this measure is oriented to regular distributed programs and our

objective is to apply it to a scalar uniprocessor.

2.1.1 Partial order and lattice

A partially ordered set, E, is denoted by hE;6i and is commonly named

poset, for short. 6 is the partial-order relation associated with E.

x; y 2 E are said to be comparable if x 6 y or x > y, and incomparable

(or xky) when x 
 y or x � y. E is a chain if all x; y 2 E are comparable.

Conversely, if every x; y 2 E are incomparable, then E is an antichain.

The covering relation in a poset E is de�ned when for x; y; z 2 E, x < y

and there is no z where x < z < y. It is said that x is covered by y (or y

covers x) and is noted as x�� y or y ��x. Due to the nature of the work

and just for a matter of simpli�cation, we will refer to the covering relation

in N 1.

The graphical representation of a poset E is a directed graph, where the

nodes represent the elements of E and the edges the covering relation from

a pair of E. Such a graph is called Hasse Diagram.

For any given x 2 E, #e (read 'down x') is the set of predecessors of

x, where #e = fy 2 E j y 6 xg, and for any given subset F of E, the set

1
N= f1; 2; 3; ::::g
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of predecessors #F =
S

y2F (#y). Similarly, the set of successors of x is

"e = fy 2 E j y > xg, and "F =
S

y2F ("y) for an arbitrary subset F of E.

We denote x_y for supfx; yg and x^y for minfx; yg. If for all x; y 2 E,

x_ y and x^ y, E is called a lattice. A lattice is called a distributive lattice,

if and only if, for any x; y; z 2 E; a ^ (b_ c) = (a ^ b)_ (a ^ c).

We de�ne the tuple hE;6;P ;'i as a labelled poset � from a non-empty

poset hE;6i with a non-in�nite width (w(E) being the largest antichain in

E), with a �nite decreasing chain and a non-empty set of processes P . ' is

the labelling function de�ned as ' : E �! P .

A(�) is said to be the set of antichains of � and is known to be a

distributive lattice with the partial order property v which we de�ne as:

8X; Y 2 A(�); X v Y () #X � #Y .

To describe G(�) we have to de�ne T (�) as T (�) � A(�)�E�A(�),

and is the set of edges (X; e; Y ) such that (#Y ) n (#X) = feg.

G(�) is called the labelled Hasse diagram and its de�nition is G(�) =

hA(�); T (�) i.

2.1.2 Discrete model of a distributed computation

The former approach used in [5] and [23] is oriented to a distributed platform

where N independent processes, (Pi)i2N, run in parallel and communicate

asynchronously by exchanging messages. It is assumed that N , the number

of processes, will run on N processors.

The labelled poset �, de�ned previously, becomes the tuple hE;<;P ;'i

called a distributed order. Now the elements of E leave the abstraction level

and become 'precise' events through the computation. The partial order

relation, <, expresses the order in which computations take place and how

they are related, either sequentially or in synchronization events. ' now

assigns the process identi�er for each event.

The way in which this approach will be modi�ed for an asynchronous

scalar processor will be described in section 2.2.

The partial order relation < di�ers from 6 discussed above, because the

former respects the order of execution in a continuous and strictly ascending

way. In <, events depend on previous events so they cannot take place at

the same time; they must evolve in some way. The notion of time on its own

is not de�ned in the poset, even though there is a clear concept of ascending

progression that keeps the computation order from the start to the end.

As we have said, if one event b 2 E depends on another event a 2 E

(a�< b which means \a is before b"), b obviously takes place after a without

depending in which process both events take place. Again, if a�� b and

a ��b, a and b have no causal relation, so they are concurrent (akb).
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2.1.3 Measuring the antichain lattice

In �gure 2.1 we can see from the lattice a computation with three processes

(P1; P2 and P3) and their actual events. We are interested in the sets whose

events are not causally related (antichains) and therefore concurrent. For

instance, we can see the following relations: a�< b; a�< g; b�< d; c�<

d; c�< e; d�< f; f�< g; f�< h; g�< i; h�< i; h�< j; j�< k and e�< k.

Similarly, if a�< b and b�< d, we get a�< d. With the transitive property

we can get all the possible relations.
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Figure 2.1: The distributive poset �.

Thus, the set of antichains A�(e) contains the set of \concurrent" events

of e that we want to underline, and is de�ned as: A�(e) = fX 2 A(�) j e 2

Xg read as the antichains that contain e. The proper concurrency measure

is 8 e 2 X; �(e) = j A�(e) j.

In the example from �g. 2.1, �(d) = j ffdg; fd; egg j= 2, which is clearly

a synchronization event. On the other hand, event e's measure is �(e) =

j ffeg; fe; ag; fe; bg; fe; dg; fe; fg; fe; gg; fe; hg; fe; ig; fe; jg; fe; g; hg; fe; i; jg;

fe; g; jgg j= 12.

It is said that a \high" measure � of some event (as is e in the previ-

ous example) is an event with a high number of concurrent events, and a

\low" measure of � (like in �(d) above), is a point of strong synchronization.

Events with a high measure can be scheduled in several places, and depend-

ing on other considerations (heuristics), their �nal position in the code will

be eventually decided.

The methods for computing � for each event consist in counting the

edges (antichains) of the labelled Hasse diagram G(�). An example of G(�)

can be seen in �gure 2.5.

2.1.4 Vector clocks

For a number N of processes, (Pi)i2N, there is an integer vector of length

N associated with each process Pi that keeps the state of a \logical clock"

and is de�ned as follows for i 2 N :
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Ci+1(Pi) = Ci(Pi) + 1 +max[Ci(Pi); Tj(Pj)].

Tj(Pj) represents the vector clocks from all the events in other processes

that synchronizes Ci(Pi). In other words, the vector clock Ci of an event

e 2 Pi is updated with a copy of its predecessor's vector clock in Pi, and

incremented by one. Thus the event is taken a consecutive stamp applying

the < relation. To update e with all the synchronization events from other

processes, amax function must be applied to all the elements of the vectors.

Doing this will reect the relation of sending a message from one process

to another. Figure 2.2 shows how the poset � is represented with vector

clocks.
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Figure 2.2: Vector clocks for the poset �.

2.2 Applying concurrency measures for the MAP

Architecture

In our case, the program consists of a sequential stream of instructions that

exposes �ne grain concurrency. The ability of the MAP datapath to exploit

both temporal and spatial concurrency [1][2] leads us to model it with a

\micro-distributive" behaviour, in which N independent units, (Ui)i2N, can

execute instructions concurrently as they show some degree of independence.

The asynchronous control in MAP allows the di�erent units in the processor

to operate freely, so that they are only regulated by their own latency as

shown in [3]. We will ignore the micro-operations and the overheads in the

communication protocol.

We wish to capture the concurrency at the instruction-level in a sequen-

tial program so an event e 2 E models an instruction from the program.

It has to be executed in an unit that corresponds to its nature, e.g. an

add instruction has to be executed by an arithmetical unit, and so on. The

dependencies between instructions impose the order of execution, and act

as synchronization events. The data shared in these operations are the re-
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gisters of the processor as shown in �g. 2.3. These considerations respect

the characteristics and properties of the poset � = hE;<;P ;'i.

An important fact is that if we consider an unlimited number of di�er-

ent resources (at least the number of instructions), the measure will reveal

a concurrency based only on data dependencies, and give an upper limit.

If we constrain the number of resources (as will surely be the case at some

point) the measure obtained would take into account the data dependencies

and some resource dependencies implied from the lack of resources. Obvi-

ously this measure would be much lower meaning a more sequential order

of execution. The new resource dependencies would hide the possible ILP

improvements from the compiler work and eventually would render an ef-

fective measure to any change. A measure that is useful for us is one that

considers pure data dependencies, although in the future we will consider

the target to see the concurrency sensitivity.

In the example in �gure 2.3 we consider U1 as a memory unit, U2 as

a add/subtract unit, and U3 as a multiply/divide unit. The values with

an $ symbol correspond to real processor registers and the ones without it,

represent just immediate numbers. The way that the source and destination

are placed is like in many RISC-type instruction sets: the destination is the

left and the operands are in the right (there are instructions with only one

source operand).

a la $12 $29 0

b addui $13 $12 8

c muli $14 $8 2

d addu $15 $14 $13

e muli $8 $9 4

r

r
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r
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@
r
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b

c

d e

U1 U2 U3

Figure 2.3: The representation of MAP's code in the poset �.

It can be seen that each instruction i matches every event e in the lattice

and the data dependencies are respected conveniently. For example, instruc-

tion d requires registers $13 and $14 that are computed in instructions b

and c respectively. Similarly, event d in the lattice, demands that the events

b and c must have been computed beforehand.

The data dependencies considered are RAW (read after write) true de-

pendency, WAR (write after read), false or anti-dependency, and WAW

(write after write) output dependency, as in every scheduling study.

It is important to mention that for an add/subtract unit, for example,

we do not make any distinction between an addui instruction and an add or

subui instruction. If we de�ne an add/subtract unit, only add and subtract

instructions will be executed there; if it is an add unit, only add instructions

can be executed.
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These interpretations are necessary if we want the concurrency measure

algorithm to give us a realistic and con�dent measure of the code we want

to apply to.

The sets of antichains of A�(i) (where i is an instruction in the code,

equivalent to an event e in the lattice) and their respective concurrency

measures in the example of �gure 2.3 are the following:

� A�(a) =
�
fag; fa; cg; fa; eg

	
=) ��(a) = jA�(a)j = 3

� A�(b) =
�
fbg; fb; cg; fb; eg

	
=) ��(b) = jA�(b)j = 3

� A�(c) =
�
fcg; fc; ag; fc; bg

	
=) ��(c) = jA�(c)j = 3

� A�(d) =
�
fdg; fd; eg

	
=) ��(d) = jA�(d)j = 2

� A�(e) =
�
feg; fe; ag; fe; bg; fe; dg

	
=) ��(e) = jA�(e)j = 4

It can be seen that instruction e is more concurrent than any of the

other four instructions, as it could occur concurrently either with a, b or d;

conversely, instruction d is a point of synchronization from its low measure,

meaning that it could occur concurrently only with instruction e.

The lattice clearly reects the behaviour of the small code, as all the

dependencies that the code expose are captured and respected.

2.3 Limits of the concurrency measure

2.3.1 Concurrency in di�erent schedules

The intention to apply the concurrency measure algorithm to a sequential

program is to see if, after some scheduling optimisations to it, we can obtain

information that quanti�es an improvement or a decrease in bulk over the

original code.

Before thinking about the concepts and heuristics to overcome the schedul-

ing problem of an asynchronous processor, we need to establish an evalu-

ation workbench for any piece of code. In this way, we would be able to

make distinctions between a potentially \good" scheduled code and another

that is not so \good", and therefore evaluate whether or not the scheduling

heuristic was better.

If we reconsider the example in �gure 2.3, and move the order of some

instructions respecting the semantics of the program and the number and

type of units, in order to see any variation from the previous results, the

code and its lattice would look like in the �gure 2.4. As it can be seen,

it shows a new order of the code which has an equivalent output to the

previous version and respects the known dependencies. The units U1; U2 and

U3 stay dedicated to memory, add/subtract and multiply/divide operations

respectively.
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In this occasion, the �rst instruction muli $14 $8 2 will be considered

as the instruction a 0 with its equivalent event a 0 in the lattice. c means

instruction a 0 was the third instruction in the code in the previous example,

and so on.

a 0 (c) muli $14 $8 2

b 0 (e) muli $8 $9 4

c 0 (a) la $12 $29 0

d 0 (b) addui $13 $12 8

e 0 (d) addu $15 $14 $13

r

r

��
�

r

r@
@

@
r

c 0
d 0

a 0

e 0 b 0

U1 U2 U3

Figure 2.4: Another representation of an equivalent code from �g. 2.3.

After looking the lattice, we realise that it has the same shape as in �g.

2.3, but the events are placed in di�erent positions. Naturally, we expect

that this lattice will show similar concurrency measures for the new events.

Table 2.1 displays measures of �(�)(i) for all the 10 instructions in both

examples. It is clear that the values of �(�) for a and c
0 are preserved in the

same way as e and b 0, etc. We know that those pairs of events correspond

to the same instructions: they are just placed in di�erent parts of the code.

Instructions i a b c d e a 0 b 0 c 0 d 0 e 0

�(�)(i) 3 3 3 2 4 3 4 3 3 2

Table 2.1: Concurrency measures from �gures 2.3 and 2.4.

This observation enabled us to see any other di�erences in the measure

to help us to make some distinction between both schedules.

Any metric in the concurrency measure shows the same numbers: for

example, the mean �(�)(i) = 3 and the variance �2�(�)(i) = 2=5 are exactly

the same, since every measure in both schedules is the same point-to-point,

with the sole di�erence in the order.

After extensive checking with the di�erent programs and with their pos-

sible schedules, this pattern stayed constant. For every allowed schedule

in a code, every instruction has a proper concurrency measure and will be

constant in any position in the code if all the dependencies are respected.

This is proven in the next section.

2.3.2 Results

First of all, we have to prove that for any allowed schedule in a code we

have the same number of instructions and the same set of them. To call two

schedules equivalent (they produce the same output), we have to prove that

they have the same number of instructions, the same set of dependencies and
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their sets of A(�) are equivalent. Then we show that if their dependencies

are maintained but with di�erent opcodes, the number of nodes and edges in

the labelled Hasse diagram G(�) is the same, so they have the same topology.

We call for short, code �E and �F two di�erent schedules.

(1) Two codes (�E and �F ) are called equivalent if they have the

same instructions, the same number of them and they produce the

same output.

(2) Two codes (�E and �F ) have the same concurrency measure

if they have the same number of instructions, the same set of depend-

encies and same number of them. It is said that they have the same

topology.

To show (2) graphically we will show two Hasse diagrams �E and �F

with their labelled Hasse diagrams G(�E) and G(�F ) respectively. They are

not equivalent because they do not have the exactly the same instructions,

but they have the same set of dependencies. Therefore, they do not have

the same shape, but the same topology.
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Figure 2.5: �E with G(�E) on top, and �F with G(�F ) on bottom.

From �gure 2.5, it can be seen that �E is not the same lattice as �F ;

they have the same number of instructions and the same number of relations

between them, but the units where those events take place do not corres-

pond. From (1), we say that �E =6== �F . Obviously, G(�E) =6== G(�F ),

but again, they both have the same number of nodes and the same number

of edges so, as the method to count the concurrency measure is based on

the number of edges from each event, the measure from both lattices is the

same.
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If we have j G(�E) j = j G(�F ) j from the same set of relations and the

same number of them as in the previous example, we obtain the same meas-

ures. The advantage of this is that even if we have a small di�erence in the

opcode, e.g. muli $14 $8 2 instead of divi $14 $8 2, the dependen-

cies are maintained.

2.4 Preliminary conclusions

We have seen that for any correct schedule of a program, the concurrency

measure of each instruction stays constant whenever it is placed. This is

because the equivalent lattice from the code is the same as all the data

dependencies between instructions are consistently respected. This means

that every possible schedule of a code has a constant concurrency mean

which we did not wish for.

The point is that, even for small changes in a schedule (swap two in-

structions), the there are dramatic changes in the total execution time. This

stems from the fact that the simulations are performed in a more complex

behaviour where not only the dependencies are involved, but also unit laten-

cies, synchronization overheads, out-of- order execution, cache hit-miss, etc.

This result has guided us to change the particular approach of the con-

currency measure, since we want a measure that would be more sensitive to

the order of the instructions and would distinguish a good schedule from a

bad one. If we could come up with such a measure, then we would be in

good position to determine if a schedule is near the optimal set or not.

The labelled Hasse diagram G(�) is a very compact representation of a

program as it captures all the dependencies and the possible schedules on

it, without growing exponentially. This particular feature is of interest and

will be studied in future work.
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Chapter 3

Alternative Measure

The idea of using the concurrency measure in the code to evaluate the sched-

ule was a �rst attempt, but as seen in the previous chapter, several schedules

give consistent measures of ��(i). This is good in the sense that it reects

the points of strong synchronization and the points that are more concur-

rent, but we want more from a static analysis is to make distinctions between

the multiple schedules.

Our need for an e�ective and inexpensive way to separate schedules that

have longer execution times and those that have faster response times is

very important, and is even more so if we have to consider techniques and

heuristics to increase ILP for the former scheduler.

3.1 Measuring consecutive dependencies

3.1.1 Introduction

The concept behind this way of analysing the code is based on the number

of consecutive dependencies in instructions. The reason for the scheduling

theory's success is its ability to issue more concurrent instructions and to ex-

ploit them conveniently in highly sophisticated architectures with multiples

units.

In the past, it has been shown in [7], [12] and [26] that pipeline architec-

tures su�er from pipeline hazards when one instruction needs the result from

a previous instruction that has not �nished or when a resource is needed by

two or more instructions simultaneously. In [17], a schedule is called greedy

when hardware interlocks have to be inserted if an instruction has to wait

for a value that has to be loaded from memory, or when nop (no operation)

instructions are inserted in the code.

Micronet-based Asynchronous Processor (MAP) Architectures, in com-

mon with other pipeline architectures, su�er from functional unit conten-

tions when there are consecutive dependencies. Although it has been shown

in [2] that a major advantage of MAP networks over micropipelines and
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synchronous pipelines is the e�ective exploitation of temporal and spatial

concurrency, consecutive dependencies in the code is detrimental to its per-

formance. The results of scheduling MAP architectures [4][18] reveal that

reordering the instructions can be as bene�cial as for any other pipeline

architecture.

In the rest of this chapter we present an inexpensive way to evaluate

di�erent schedules and the preliminary conclusions obtained by it.

3.1.2 The Concept

As it was seen in section 2.4, the results from the concurrency measure

algorithm give interesting insights but not very useful for our interests: our

bigger concern is to come up with a simple and intuitive way to categorize

the schedules from their execution times.

Scheduling theory is based on the idea of detecting and placing concur-

rent instructions between dependent ones to enhance resource utilisation

without producing pipeline stalls; the policy to place the instructions now

depends on each author's particular considerations. We will focus our at-

tention where consecutive instructions take place as it is a crucial matter in

producing hazard interlocks and lengthening the execution times.

The idea is to penalise an instruction that depends on its immediately

previous one. In other words, if a pair of instructions, x and y, are placed

consecutively in a code, and y depends on x, we penalise y, otherwise we

do not. Let S be a schedule; we de�ne the weight of S as the integer and

non-negative value !:

8 x; y 2 S ^ x p< y; 9 ! > 0 j ! + dep (x; y)

Where : dep (x; y) =

�
1 if x�< y

0 if x k y

We will refer to p< as the operator for two consecutive instructions in a

a schedule. If the instructions are consecutive and the second one depends

on the �rst one, they are said to be consecutive-dependent instructions.

If we take again the schedule in �gure 2.3, instruction b is positioned

immediately after instruction a, so a p< b; moreover, as there is a dependency

from register $12 in instruction a, to b (a�< b), the algorithm penalises b

as it is a consecutive-dependent instruction of a. In that example, only

instructions b and d are penalised, but if we apply the same concept to the

code in �gure 2.4, the instructions that are penalised are b, d and e.

The �rst impression from both schedules is that the one with less penal-

ties is \statically better" than another that has more because it might avoid

more hardware interlocks. In the previous two schedules (from section 2.2

and 2.3.1), the weight for schedule one is 2 (!1 = 2), and for schedule two

!2 = 3.
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This principle seems inexpensive, and states the di�erences between valid

schedules as wished, but extensive tests are necessary to allow acceptance

of this concept.

3.1.3 Concept example test

The only way to con�rm that the measure of a schedule's weight is valid

and useful is to exhaust all the possible combinations from it: to simulate

one by one all the schedules and to relate the results to a distribution.

However, looking at all the possibles schedules from a code is very ex-

pensive as their number grows exponentially with the number of instruc-

tions. We will therefore concentrate on very small examples (less than 20

instructions).

The platform under which the simulations are done is based on that in

[18], which is a stochastic simulator for MAP that executes source programs,

produces execution timings and displays a graphical representation of MAP's

behaviour. As it uses a stochastic model, it produces real results bounded

between a worst and a best latency time from each unit. An architecture

con�guration �le describes the di�erent units with their latencies and the

instructions that are intended to be executed by them.

Table 3.1 displays all the permissible ways to place the �ve instructions

from the example in �g. 2.3 with their actual \weight" measures and the

average execution times from their simulations.

Weight ! Schedule Tavg:(1) Pos(1) Tavg:(100) Pos(100)

0 a c b e d 90.64 ns 1 4305.77 ns 1

1 a c b d e 93.56 ns 2 4624.71 ns 2

1 c a e b d 94.06 ns 3 4650.70 ns 3

1 c a b e d 97.21 ns 5 4905.36 ns 5

2 a c e b d 96.41 ns 4 4868.65 ns 4

2 a b c e d 99.16 ns 6 5148.14 ns 7

2 c a b d e 99.89 ns 7 5222.71 ns 8

2 a b c d e 100.05 ns 8 5144.12 ns 6

3 c e a b d 102.49 ns 9 5528.17 ns 9

Table 3.1: Weight measures and executions times from �gure 2.3.

For a matter of simpli�cation, all the experiments were done under the

same architecture with the same worst and best latency timings in all the

units. The number of units was devised to match all the instructions and

avoid possible resource dependencies at execution time (in this particu-

lar case there were two adders, two multipliers, two logical units and one

memory unit). These considerations were intended to capture the response

time only in relation to the variations in the order of the instructions (data

hazards).
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Each schedule was simulated 20 times under a program to obtain a set

of executions of each one and state an average execution time. The average

times appear in table 3.1 where Tavg(1) represents the average time for

one loop-pattern from each schedule, and Tavg(100) is the time from a 100

iterations-loop containing the schedules's pattern. The ranking position

of each schedule in both experiments is noted as Pos(1) and Pos(100) in

accordance with the execution time.

The reason for putting each schedule pattern under loops with di�erent

iterations was to see the \stability" of the measure. We wanted to see the

order of the execution time from one pattern T (1) and the change when

this pattern was repeated multiple times as in T (100). T (1) tends to give

a better approximation to the real separation from di�erent schedules by

spacing the timings in proportion with the number of iterations. Thus, we

expect that Pos(100) gives a ranking closer to the real order than Pos(1).

It can be seen that there is a continuous rise in the execution time that

corresponds with the increase in the weight ! from the schedules. This is

a very small example, even though the schedule with the fewest penalties

( a c b e d ) tends to be executed in the fastest way, and schedule c e a b d ,

that has the highest weight with 3, has an execution time that is clearly the

longest.

There is a good proportional relation seen between the weight ! and the

execution times, but we have to remember that as this is a very small ex-

ample, we have considered an appropriate target con�guration to eliminate

the chance of resource dependencies (structural hazards). In other words,

there are no stalls caused by instructions waiting for a unit to perform them

as there are enough units to execute the instructions. Therefore the results

in table 3.1 show an execution close to an only-data-dependency behaviour.

Interestingly, schedule a c e b d with a weight ! = 2 runs faster than

schedule c a b e d with ! = 1 in both experiments. This means that there

is a possible gap between schedules with consecutive weights. Particular

attention shall be given to seeing this in the simulations of bigger examples

in the next section.

3.2 A program example

The example in section 3.1.3 shows a good relationship between the weight

! assigned to each schedule and their execution times, but the size of the

code and the considerations taken under the con�guration target are not

realistic.

Our base example is a small loop program written in C language extrac-

ted from the tomcatv benchmark pictured in �gure 3.1(a) with its assembly

code in �gure 3.1(b). The Assembly code is obtained from the SUIF com-

piler [36] (in MIPS processor format [16]) and it corresponds to the main
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L2.main:

muli $11,$9,4

main() { la $12,$29,0

addui $13,$11,4

int i, n = 10; addu $14,$12,$13

int x[10][1]; subui $15,$9,1

subui $24,$8,1

for (i = 1; i <= n; i++) div $25,$15,$24

x[i][1] = ((i - 1) / (n - 1)); sw $25,$14,0

addui $9,$9,1

} sle $10,$9,$8

bt $10,L2.main

Figure 3.1: (a) C Program (b) Assembly code

loop in the program.

The underlying architecture is restricted to one unit of each type: one

ALU unit, one logical unit, one memory unit and one branch unit. Again,

the worst case, the average case and the best case latency times are the same

in all the units. The reason for this is to observe how the program behaves

in a more limited con�guration where data, structural and control hazards

can take place. We use a MAP simulator that models the asynchronous

datapath from MAP.

This small example (11 instructions) provides a large enough set of pos-

sible schedules to test (3732). For each one, the weight measure ! is com-

puted and each one is simulated 20 times to obtain a minimum, a maximum

and an average execution time. This provides a good methodology to see

the performance of the measures.

Due to the fact that we are working with an asynchronous target we have

to remind some observations from the MAP's behaviour as in [1]. Firstly,

we have to penalise consecutive-dependent instructions if they really stall

the pipeline. WAR and WAW dependencies, called false dependencies, do

not avoid concurrent execution and they just imply a limitation to ensure

that the source register has the value before writing to it (WAR), and that

write-backs (in WAW) are forced to occur in-order. These dependencies

do not stall the pipeline as a \true" RAW dependency does, thus we only

penalise RAW dependencies. Secondly, the stall produced from a true (con-

secutive) dependency in branch instructions is considerably longer because

it is combined with a control hazard. As the branch instruction decides

whether the branch is taken or not all the instructions in the loop have to

be completely executed before the control ow can continue. Consequently,

we will penalise strongly these dependencies.
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3.2.1 Results

The results obtained from each simulation appear in table 3.2. They show

the distribution of the execution times from the whole set of schedules in

accordance with the penalisations in each one. Again there is a tendency of

having better execution times with less penalties. The number of schedules

from each measure with their minimum, maximum and mean times are

displayed as well. Last column points the percentage of schedules from

each measure that are within the 1.5% of the best execution time from the

program.

! Num. Min. Mean Max. Best 1.5%

0 177 692.78 ns 698.21 ns 704.87 ns 95.48%

1 513 698.39 ns 723.41 ns 757.22 ns 13.64%

2 826 700.92 ns 741.98 ns 793.18 ns 2.30%

3 1,005 728.31 ns 771.08 ns 825.02 ns 0.00%

4 665 760.04 ns 802.08 ns 855.92 ns 0.00%

5 359 795.18 ns 832.83 ns 886.23 ns 0.00%

6 139 845.90 ns 867.13 ns 914.02 ns 0.00%

7 36 879.43 ns 894.69 ns 905.06 ns 0.00%

8 12 930.75 ns 932.12 ns 934.45 ns 0.00%

Table 3.2: Distribution from the execution times according to the weight.

3.2.2 Observations

The function t = f(!) has a domain in N� 1 and maps to an R+ co-domain

(f : N� p�! R+). As f is not continuous, it cannot have an inverse function

and therefore it is not a one-to-one (bijective) function.

Ideally, the function that we would expect is a monotonic increasing

function t = f(!) where for two weights x; y 2 ! such that x < y, we have

f(x) < f(y). In other words we would expect that for a schedule with a

bigger weight than another, its execution time would be longer than the

latter one. Realistically, we do not obtain such a function; we �nd that for

some x; y 2 !, such that x < y, f(x) > f(y).

Although the function presents an overlap with the di�erent weights, the

advantage of looking at the set with the least measure ensures, with a good

probability, of getting a good schedule. In our program example, the set of

schedules with a weight ! = 0 ensures that all of them have execution times

within the 5% and 95.48% (169 of 177) of them are located in the 1.5% of

the best execution time.

1
N
�

= 0 [ f1; 2; 3; :::g
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Looking at it in another way, we can see that the variance from the set

with the minimum weight is very small. This means that all the possible

execution times are close together, and if we add that almost all the set is

within the 1.5% of the best execution time, choosing one schedule from this

set gives good chances that the schedule performs with a good execution

time.

3.3 Location of our analysis

Among the three general ILP architectures described in [28], in the sequen-

tial architectures, where the superscalar processors are located, the compiler

is not expected to communicate to the architecture in any way the paral-

lelism in the code. Conversely, in dependence architectures (dataow pro-

cessors) and independence architectures (VLIW processors), the compiler

has to identify the dependencies and independencies between operations re-

spectively.

In our case, MAP processors are considered as a scalar processors, but

di�er from the classi�cation above in the sense that the compiler aids the

asynchronous target to improve ILP even without sending this information

to the hardware.

Our analysis, as it has been shown, is based on the appearance in the

code of consecutive-dependent instructions. This could be compared with

the dataow processors where the compiler has to expose explicitly the de-

pendent operations in the program. The main di�erence is that we identify

these dependencies (if they are consecutive) and avoid to generate sched-

ules with them. In the case of the dataow processors each instruction is

attached with a list of its successors, and the hardware has to check which

instructions have all their operands ready in order to issue them.

In contrast, in VLIW processors, the compiler provides speci�c inform-

ation to the hardware about which operations are intended to be executed

simultaneously. It must evaluate which operations will be packed to form

the �nal instruction and depending of the target, it decides in which func-

tional units each operation has to be executed. Our static analysis actually

looks for independent instructions not in a global way as the independence

architectures do, but in a consecutive way. Another big di�erence is that

the �nal code for our target is not expected to be executed exactly in the

same order as the compiler intended as in VLIW architectures, where the

hardware virtually makes no run-time decisions in the order of execution;

instead instructions will naturally reorder depending on the contention for

resources and the length of the path.

In the case of superpipelined (independence) architectures, the compiler

again, has to identify all the independent instructions in the code and sched-

ule them knowing the unit's latencies. The complexity of MAP's model cer-

20



tainly forces the compiler to analyse the code and to identify the independent

instructions even if it does not communicate explicitly this information to

the processor.

3.4 Preliminary conclusions

The preliminary results show that the weight measure based on consecutive

dependencies between instructions e�ectively captures the schedules with

lower stalls that seriously a�ect the execution time. However, due to the

large number of possibilities that a code can be scheduled, this concept does

not su�ciently restrict the set of good schedules. This implies that further

inexpensive criteria must be considered in the near future.

In the next chapter we present the future work around the scheduler for

MAP architectures and di�erent optimisations that might be worth consid-

erably for future implementations.
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Chapter 4

Thesis Proposal

4.1 A Local Scheduler for MAP

Scheduling code on synchronous RISC processors is simpli�ed by the fact

that the latencies of pipeline stages are often considered equal and the in-

struction's execution times tend to be one cycle [16]. For example, in [12]

the proposed scheduler has an �(n2) complexity which considers only 0 or 1

cycle latencies. Palem and Simons [26] present a polynomial order scheduler

based on the rank algorithm that does not guarantee a feasible schedule if

latencies are greater than one. Proebsting and Fisher [27] propose a linear

time optimal code scheduler for delayed-load architectures with all instruc-

tion latencies of one cycle duration.

The balanced scheduler [17] introduces an algorithm to measure load

level parallelism that produces bene�cial results when the load latency is

unknown, with a worst case complexity order of �(n2 � n) 1. This is one

good attempt to look at the non-uniformity of some systems. However

it has been shown in [18] that the balanced scheduler needs di�erent and

important considerations for an asynchronous target, such as considering if

one instruction's unit has been used previously.

Taking into consideration that the order of the scheduling problem is

NP-hard [33] and the non-determinism of MAP asynchrony makes it hard

to predict its behaviour, the complexity of a scheduler algorithm could be

expected to be high using traditional synchronous approaches. Thus, the

importance of an inexpensive way to determine a schedule without consec-

utive dependencies becomes apparent. An algorithm capable of being less

sensitive to the variance in latencies will e�ectively perform better.

From results in the previous chapter, the concept of consecutive depend-

encies reveals better schedules than others by avoiding hardware stalls. A

heuristic based on this concept is good to discard all the schedules that do

not have the minimum weight from the total possible set; however, the num-

1
� is the inverse of the Ackerman function.
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ber of them could be considerably higher, so a second criteria is necessary

to reduce the set of optimum static schedules.

4.1.1 Heuristic applied to a local List Scheduler

The results presented in the last chapter have motivated us to incorporate a

heuristic based on the \penalise consecutive dependencies" (PCD) concept

into the balanced -local- scheduler presented by Ko in [18]. The aim is to

see how the heuristic performs in practice with programs of reasonable sizes

such as the Livermore Loops [10].

The only di�erence with the former scheduler is the criteria to decide

which instruction from the ready list will be scheduled �rst. Ko uses a com-

bination of the critical path, number of successors, number of used registers

and if the instruction's unit has been previously used. Our heuristic only

considers the consecutive (true) dependency along with the unit's depend-

ency. This involves a more simple computation.

The benchmarks were simulated under two architectures with same num-

ber of units (one arithmetic unit, one logical unit and one memory unit):

one with the same worst, average and best latency timings in all the units,

and the other one with a range of latencies for the units. In this way the

heuristic is tested in di�erent environments to check its consistency.

It is understood that the heuristic is boosted by the e�ect of the balanced-

scheduler algorithm (and eventually inherits its complexity) but the property

that avoids the consecutive dependencies ensures a good performance.

The following charts in �gure 4.1 and 4.2 show the execution times from

the Livermore Loops without scheduling, with a list scheduler (Traditional

list scheduler from Gibbons and Muchnick [12]), with the MAP balanced

scheduler, and with a new version with the PCD heuristic. It can be seen

that our heuristic performs slightly slower than the other two schedulers,

although in some cases it runs equally well.

Interestingly, the results from �gure 4.2, where the range of latencies

are di�erent, the PCD scheduler has comparable times with the other two

schedulers. The reason for this might be that the heuristic is less sensitive

to the variance in the latencies.

4.1.2 Improve the local scheduler

Part of the future work involves the optimisation of the local scheduler.

From the simulations in the previous section, it is clear that the heuristic is

useful and ensures less stalls in the pipeline. Two possible ways to undertake

the improvement of it will be considered in the near future. The �rst one

points to determine other suitable criteria to the actual local scheduler, and

the second one points to improve the complexity of the actual algorithm.
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Figure 4.1: Execution times with the same latencies in the units.

Improve the local scheduler with our heuristic

The local scheduler with the consecutive dependency heuristic has shown

good times, but we think that there is scope for improvement that has to

be exploited. This direction obviously implies that the complexity of the

scheduler will stay at the order of �(n2 � n). We will focus our attention at

the set of schedules with the least weight ! where the optimal schedule is

located.

Improve the complexity of the local scheduler

Looking at the complexity of the balanced scheduler, another possibility

to improve it is by implementing an algorithm that also ensures the least

weight but with a better complexity order. This means that we will obtain

similar results such as the times from the Livermore Loops (in the program

example in last section), but in a faster static time. Our upper bound is

the one from the former balanced scheduler and our expectations are not to

exceed it.

We have to evaluate if we want a fast scheduling algorithm and con-

centrate in further global optimisations (see next section) or if we want a

close-to-the-optimal schedule with the the former complexity.

4.1.3 Heuristic upper bound

We have seen that when applying the heuristic to get schedules with the

least weight measure we obtain good execution times. However, we do not
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Figure 4.2: Execution times with di�erent latencies in the units.

know the upper bound that this concept could give. This is important to

establish the worst case if we want that the heuristic look for any schedule

with the minimum weight.

In the near future we have to �nd this upper bound to be able to ensure

that any of the schedules in the set with the least measure produce really

good execution times.

4.1.4 Consistency from the heuristic

Other important issues in order to observe the consistency of the heuristic

are the following:

� Choosing schedules without consecutive true dependencies in the code,

ensures no data hazards that are very costly; however, it does not

ensure structural hazards produced from the use of a common resource.

The big advantage from the Micronet model comes from the fact that

di�erent stages are initiated as soon as their micro-operations are ready

and they can be stalled if there is a contention from one resource.

Most contentions are produced by data hazards, but they can also be

produced by structural hazards during the execution. In other words

if two instructions are independent does not mean that they do not

produce a stall; if those instructions are related in some way (e.g.

depend on the same unit for example) they can produce a stall that

maybe is not as costly as a data hazard.
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We will have to investigate the di�erent degrees of stalls from data,

structural and control hazards. The importance of independent in-

structions can be followed by �nding unrelated instructions. This can

be the base for a second criteria on this static analysis.

� Other main issue that has to be investigated is the variance in latencies.

The tests so far, have been done with the same ranges in the latencies

with a worst -and a best- case latency timings relatively close. The dif-

�culty to predict when the resources are available grows considerably

if there is wider variance in their latencies; so if we increment this

variance, we will be in position to test how the the weight measure

reacts to the unpredictability of the asynchronous behaviour.

From the Livermore Loops simulations we found that the PCD sched-

uler performs better in the case where the architecture had di�erent

latencies in the units. The results were comparable to the other sched-

ulers. The reason for this is that the heuristic can be less sensitive to

the latencies variations in the units. Extending this work by increasing

the range of variation will be something to look at shortly.

4.2 Other techniques to increment ILP

4.2.1 Global scheduling

It has been pointed out by the community that there is not enough ILP

available in basic blocks [15][34][32][28]. Superscalar and multiple-issue ar-

chitectures [3][24] require large amounts of �ne-grain parallelism to exploit

the architectural advantages of their datapaths. Scheduling beyond basic

blocks has been an e�ective solution to improve the amount of ILP as it has

seen in [6],[14] and [22].

In our future work we will consider seriously the introduction of global

techniques to improve the ILP available and therefore to improve the re-

source utilisation and to obtain the least of possibles stalls.

Scheduling instructions beyond basic blocks increases the options to the

compiler to allocate more independent instructions and avoid stalls; it takes

advantage of the branch probabilities. This technique e�ectively performs

better in control-intensive programs as there are insu�cient instructions to

select from the schedule.

4.2.2 Region-based compilation

Region-based compilation is a recent optimisation technique [13] that uses

regions as the compilation unit instead of functions as traditional com-

pilers do. Functions have been a natural option for the compilation unit as

they provide a simple way to partition the process of compiling a program.
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However, the major disadvantage of this approach is that the compiler does

not have a complete control of the program's size and it has a limited view of

the rest of the functions. By inlining functions (forming the actual regions)

there are more potential opportunities for classical and ILP optimisations.

The region-based compilation e�ectively exposes hidden code to the com-

piler, but applying aggressive inlining can lead to register pressure and ex-

cessive code expansion.

4.3 Other �elds for future research

4.3.1 Instruction compounding

In [25], an instruction compounding mechanism is proposed to avoid register

pressure. The idea is to compound instructions from two or more (true) de-

pendent instructions and the implementation in hardware allows forwarding

of intermediate results to other functional units without rewriting the results

back to the register bank. Preliminary results look promising.

The compounding mechanism imposes important and di�erent issues to

the compiler that must be considered. The consecutive-dependency concept

in instructions could be modi�ed to analyse the code statically, to produce

schedules suitable to this new architecture.

4.3.2 Multithreading

Multithreading is a well known solution to program multiprocessor archi-

tectures that has been used for quite some time. Recently, its usefulness

in uniprocessor architectures has become a motivation for researchers to

improve processor utilisation [31].

The concept arises from the fact that multiple independent threads of

code can be issued to several units at a time. The potential parallelism with

this technique is promising, although the complexity of the processor could

be considerably higher.

The future work proposed in [25] also looks at the issue stage with more

than one single unit: it is evident that the natural bottleneck from one

issue unit will be relieved by the introduction of several parallel issue units.

The multithreading technique will be relevant since we will need massive

amounts of parallelism to keep the issue units busy.

Future work to the compiler includes the issues around the implementa-

tion of multithreading techniques and the implication of having more than

one issue unit.
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