
Global optimisation and Scheduling for

Asynchronous Processor Architectures

2nd. Year Report

Salvador Sotelo Salazar

December 2, 1997

Abstract

This work addresses the problem of compiler optimisations for ILP in

asynchronous architectures. Instruction scheduling for a Micronet-based asyn-

chronous target presents interesting challenges. First, the model of the un-

derlying target is more complex: the functional units have di�erent latencies

which range over di�erent intervals. Secondly, the dynamic behaviour of

the asynchronous architecture makes it impossible to consistently predict the

optimal order of execution.

This second year report presents the work done over the last year con-

cerning the local scheduler, the current work towards a global scheduler, and

an early outline of my thesis.

1

1 Introduction

Asynchronous architectures di�er from their synchronous counterpart in that the
central control unit in the processor does not have a central clock to synchronise the
operations of the functional units. The method that asynchronous architectures
use to control the ow of instructions and data along the datapath is a handshake.
The stages in an asynchronous pipeline take di�erent times depending on the
latencies of the individual stages.

The datapath of MAP (Micronet-based Asynchronous Processors) architec-
tures [1][2] is modelled as a network of functional units that communicate in an
asynchronous manner. This model exhibits �ne grain concurrency, both spatial
and temporal, so that each instruction takes the necessary stages for its execution
and only for the time needed. In the synchronous world, the instructions have to
go through all the stages and even if they complete one stage sooner they have
to wait for the next cycle to start another operation, thus keeping that resource
busy but not useful.

It has been shown that reordering the instructions of a program in a RISC
processor is quite e�ective in achieving better performances [11][15]. The idea of
arranging the order of the instructions in a code is to exploit the bene�ts of the
pipeline and avoid stalls. This is achieved by the fact that the compiler knows at
any time the state of the datapath and the latencies of the instructions are �xed
in terms of multiples of cycles. This determinism in synchronous RISC processors
has helped substantially the scheduling theory for improving execution times.

However, in the asynchronous approach this determinism is not valid. The
latencies in such architectures do not have a precise value and vary over a range.
Therefore the way to schedule a program given this model is a new �eld for re-
search. An example can be found in [3] using a list scheduler. We have looked at
the problem in a novel way without using a list scheduler.

This second year report presents the work conducted in the static analysis of
programs. Firstly, we describe the work done on the local scheduler: the heuristic
on which it is based, description of the algorithm, characteristics of the scheduler
and some performance comparisons. Secondly, we describe the work done so far on
the global scheduler and we point out the work to be done on a global optimiser.
Finally, we propose an outline for the thesis.

2 Local scheduler

2.1 Related work

Scheduling code on synchronous RISC processors is simpli�ed by the fact that
the latencies of pipeline stages are often considered equal and the instruction's
execution times tend to be one cycle. For example, in [11] the proposed scheduler
has an �(n2) complexity which considers only 0 or 1 cycle latencies (where n

represents the number of instructions in the basic block). Palem and Simons

1

[24] present a polynomial order scheduler based on the rank algorithm that does
not guarantee a feasible schedule if latencies are greater than one. Proebsting
and Fisher [25] propose a linear time optimal code scheduler for delayed-load
architectures with all instruction latencies of one cycle duration.

The balanced scheduler [15] introduces an algorithm to measure load level
parallelism that produces bene�cial results when the load latency is unknown,
with a worst case complexity order of �(n2 �(n)) 1. This is one good attempt to
look at the non-uniformity of the architectures. However, it has been shown in
[17] that the balanced scheduler needs di�erent and important considerations for
an asynchronous target, such as considering if one instruction's unit has been used
previously.

Taking into consideration that the order of the scheduling problem is NP-
complete [31] and the non-determinism of MAP asynchrony makes it hard to
predict its behaviour, the complexity of a scheduler algorithm could be expected
to be high using traditional synchronous approaches. We next show the concept
behind the Penalise True Dependencies (PTD) scheduler and its relevance to
asynchronous architectures.

2.2 PTD scheduler

2.2.1 The Concept

The concept of penalising instructions was �rst introduced in [28] and basically
\penalises" two instructions when the second one needs the result of the �rst one
in a true data dependency. Depending on the type of instructions, the value of
the penalty may vary. For example, the cost of a true dependency from a memory
load instruction is higher than one between registers. As our work has focused
on architectures where the units tend to have di�erent values over a range in
their latencies, the way to penalise true dependencies is done according to the
description of the architecture, i.e. the number and type of units and their range
in latencies.

The result of applying penalties with di�erent weights to instructions gives
us a scalar measure relative to the way the code has been scheduled. In [4],
the penalty idea has been extended to resource dependencies when instructions
are consecutive, and for the true data dependencies, for instructions that are not
strictly consecutive. For example, for the former, we apply a penalty to a pair
of instructions of the same type if there are not su�cient units of that particular
type.

The paper also shows results on how the criteria of penalising instructions is
su�cient to be considered the main heuristic of the local scheduler. The penalty
(PTD) measure was directly proportional to the makespans forming an interesting
and useful pattern.

1
� is the inverse of the Ackerman function.

2

2.2.2 The algorithm

The main idea of the PTD scheduler is to minimise the number of penalties on each
basic block. This is done by inserting independent instructions between those who
share a penalty. Furthermore, when an instruction is moved, it has to be checked
that by doing so it does not introduce another penalty to the instructions around
it, and to the instructions where it is going to be moved. This is to guarantee that
after every transformation the penalty measure is always reduced.

The scheduler computes �rst the penalty measure, which is the addition of
all the penalties, while marking the instructions. As there is no way to know
beforehand which is the minimum number of penalties -knowing it would mean to
know an optimal schedule- the algorithm must try to reduce any penalty. If after
one pass through the code there is at least a reduction of one unit in the penalty
measure, the algorithm continues for further reductions. If the penalty measure
stays constant after a pass, we have to assume that there are no possible reductions
left and therefore the algorithm has to terminate. This decision is relevant and
unique for the sake of the termination of the algorithm.

The algorithm has been partitioned in two main phases: the �rst one deals
only with resources penalties and the second with true data dependencies. As the
scheduler is sensible to the way the instructions are ordered, the order in which
these phases are selected is quite important. Given the number and high cost
of true data dependencies in a code, the penalties resulting from them have a
higher impact in the overall time than resource penalties. Thus, we have opted
for the �rst phase the reduction of resource dependencies and for the second, the
reduction of true data dependencies. Figure 1 shows the �rst and the second phase
of the scheduler.

void PTD �rst phase(dagnodes *root) f
int measure, last_measure;

measure = PTD_measure(root, first_phase);

if (measure > 0)

do f
node = root;

last_measure = measure;

while (node != NULL) f
if (node -> PTD.penalised > 0)

PTD_arrange_left_unit (node);

if (node -> PTD.penalised > 0)

PTD_arrange_right_unit(node);

node = node -> next;

g
measure = PTD_measure(root, first_phase);

g while (measure < last_measure);

g

void PTD second phase(dagnodes *root) f
int measure, last_measure;

measure = PTD_measure(root, second_phase);

if (measure > 0)

do f
node = root;

last_measure = measure;

while (node != NULL) f
if (node -> PTD.penalised > 0)

PTD_arrange_left_data (node);

if (node -> PTD.penalised > 0)

PTD_arrange_right_data(node);

node = node -> next;

g
measure = PTD_measure(root, second_phase);

g while (measure < last_measure);

g

Figure 1: First and second phase routines of the PTD scheduler.

3

The main di�erence in the functions of Figure 1 is that they call di�erent
routines for the transformations: arrange unit or arrange data. These functions
are in charge of performing the movement of instructions while respecting all data
dependencies. In the case of arrange units routines, the only consideration is to
move instructions to reduce resource penalties, while for the arrange data routines,
their consideration is to reduce penalties from true data dependencies only.

We can see the schedule from a basic block as lines of instructions where
the �rst instruction represents its entry and the last represents its exit, and the
ow of the program runs from the entry to the exit. The scheduler can either
move instructions from the left (towards the entry) or from the right (towards the
exit), from a pair of instructions that share a penalty. Figure 2 shows one of the
four functions that perform a transformation. PTD arrange left data seeks the
�rst independent instruction to the left of the penalty that reduces the penalty
measure.

void PTD arrange left data(dagnodes *nodedag) f

1: dagnodes *aux1 = nodedag -> prev, *aux2;

2: int ind_nodes = 1, cond_out = 0;

3:

4: if (aux1 != NULL)

5: aux1 = aux1 -> prev;

6:

7: if (independ(nodedag -> prev, nodedag) && valid_swap_left(nodedag, aux1)) f
8: update_node(nodedag);

9: update_node(aux1);

10: swap(nodedag -> prev, nodedag);

11: g
12: else f
13: while (aux1 != NULL && !cond_out) f
14: aux2 = aux1 -> next;

15: while (aux2 != nodedag -> next && ind_nodes) f
16: ind_nodes = ind_nodes && independ(aux1, aux2);

17: aux2 = aux2 -> next;

18: g

19: if (ind_nodes && valid_move(nodedag, aux1))

20: ind_nodes = 0;

21: if (ind_nodes) f
22: cond_out = 1;

23: update_node(nodedag);

24: update_node(aux1);

25: move_ahead(aux1, nodedag);

26: g
27: ind_nodes = 1;

28: aux1 = aux1 -> prev;

29: g
30: g
31: g

Figure 2: The PTD arrange left data routine.

4

The four routines can call either function swap or move ahead to reduce a
penalty. The former one (line 10) performs a swap between the �rst penalised
instruction and its previous one. Line 7 checks that both instructions are inde-
pendent and that the transformation reduces the penalty measure. The latter
function (line 25) moves an independent instruction pointed by aux1 ahead of
nodedag to reduce the penalty.

Routine update node (lines 8-9 and 23-24) just updates the penalty measure
and the penalties markings for the involved instructions, when a transformation
is done.

2.2.3 Complexity

The complexity of the scheduler is literally �(2nec+ 2nc+ 2n), where n is the
number of instructions in the basic block, e is the number of penalties and c is
a small constant (c = 2; 3; 4). The complexity time of computing the number
of penalties is just the order of �(n). This is reected in the term 2nc and
2n . The term 2nec reects the actual complexity of the PTD arrange left and
PTD arrange right functions in Figure 1.

The upper bound, which is represented by a pure sequential code, is �(n2),
with e = n � 1 and c = 2. Conversely, the lower bound is represented by a pure
independent code and is the order of �(n), with e = 0.

Analysing the equation above, the complexity of the scheduler can be reduced
to �(ne). However, in general conditions, as the algorithm progresses the number
of penalties is reduced and therefore n becomes bigger than e, which means that
the complexity can be considered as �(n).

2.2.4 Results

The PTD scheduler was compared against other two local schedulers, the bal-

anced scheduler [15] and the original list scheduler from Gibbons and Muchnick
(GM)[11]. The three schedulers were performed after register allocation and were
tested over a set of benchmarks. An event-driven simulator for the MAP archi-
tecture was used to simulate the benchmarks [17]. The architecture's principal
feature was that the latencies from the units had di�erent ranges. This is to
reect an architecture with a high degree of uncertainty.

The simulations were done with an architecture with one memory unit, one
logical unit, one branch unit and one, two, three and four arithmetic units (1 AU,
2 AU, 3 AU and 4 AU respectively). The MIPS-like code produced by the SUIF
compiler clearly has a lot more of arithmetic instructions that motivated us to
scale the number of these type of units to see the scalability of the algorithms.

The set of benchmarks chosen was the set of Livermore benchmarks [8] which
are loop oriented (few basic blocks), and a set of programs with a larger number
of basic blocks that we will refer as the control intensive set 2.

2In the near future we will modify the simulator in order to run traces of bigger programs like
the Spec95 benchmarks.

5

The results from the simulations show that the PTD scheduler minimises the
total stall time from the issue unit quite favourably when compared to other ap-
proaches, and in some cases better. This leads, in general, to better performances
over the set of benchmarks. The complete set of results can be found in the
Appendix A; each result represents the average of 5 simulation runs.

These results and the description of the scheduler itself are presented in [4].
This paper was presented at the 3rd. International Euro-Par Conference in Passau,
Germany in August 1997.

2.2.5 Limitations

The main limitation of the local scheduler is that in few cases there are nested
penalties. In order to eliminate them, the algorithm has to perform two or more
transformations and not necessarily with the same instructions. This means that
there is no independent instruction (in that basic block) that by moving it in
between the penalised instructions, the penalty measure would be reduced. The
scheduler then must be capable of identifying instructions that could be moved
to a place where the penalty measure stays constant, and from there evaluate if
there is a second instruction that could be placed in the desired position to reduce
the penalty. If this combination of instructions fails to satisfy the conditions, the
transformations must be reversed and the process of testing other combinations
has to continue. The major problem though, is that we do not know how many
transformations have to be done for a particular penalty, and if we add that the
cost of doing a two-instruction transformation has an upper bound of �(n2), the
task simply would not be worth3.

Another point to mention is that the PTD scheduler is non-deterministic. In
other words, it is sensible to order of input code and therefore produce di�erent,
but equivalent outputs. Although higher penalties are sorted �rst than lower ones,
the algorithm must choose among the penalties that share values. This decision
leads to di�erent \paths" during the transformations, giving at the end di�erent
schedules. We believe that this drawback is compensated by the complexity and
the results achieved.

3 Proposed work

It is well understood that the available ILP within basic blocks is insu�cient to
maintain a high level of resource utilisation[5][6][10][14][19]. To achieve better
performances than local optimisations we need to look beyond the basic block
boundaries in order to perform global optimisations. The back-end of the compiler
is composed of two independent layers of optimisations as Figure 3 depicts it.

Section 3.1 describes the work and issues around the global scheduler, while
section 3.2 describes the future work on the global optimiser and its concerning
issues.

3For a three-instruction transformation the upper bound would be �(n3).

6

transformations
Number and types Code with region
 of units

Local and global scheduler

Global Optimiser

Asynchronous model

Scheduled code
Latencies, number
and types of units

Figure 3: Di�erent levels in the optimising framework

3.1 Global scheduler

We have seen throughout last section that the success of the PTD scheduler stems
from the fact of reducing all the penalties. The need of a global scheduler capable
of moving instructions between di�erent basic blocks to reduce the remaining
penalties is therefore apparent.

3.1.1 Related work

The work done in the �eld covers a wide area in optimisation techniques over
di�erent levels of program representations. One can distinguish program optim-
isations within two main areas: optimisations which are performed independent
of the nature of the architecture (synchronous/asynchronous or single/multiple
processor), and optimisations which are performed with some notion or a model
of the target. We can see the former approach as an optimiser (see section 3.2),
while the latter being the scheduler (global and local for our purposes), as it can
be seen in Figure 3.

For example, the term code motion that is used in compiler optimisations can
be applied both in the optimiser (expressions or intermediate code) and the sched-
uler (assembly code). At a high level, the main idea is to eliminate redundancies in
the code: in [16], the movement of expressions across basic blocks is performed to
remove assignment and expression redundancies; in [7], a linear-time implementa-
tion of global code motion outperforms the use of conditional constant propagation
and partial redundancy elimination. It is clear that these optimisations improve
the quality of the code quite independantly of the type of architecture.

At a lower level, the movement of instructions is used to increase the parallelism
or ILP in the code. In this case, the heuristics and conditions to allow such
transformations di�er in practice with the target. Bernstein and Rodeh [6], for
example, use a control and data dependence representation (Program Dependence
Graph) to apply global code motion that works in innermost loops. Another
approach has been proposed by Mahadevan and Ramakrishnan, where with the

7

use of pro�le information, instructions can freely move across basic blocks within
a region respecting legality, safety and desirability conditions [21].

3.1.2 Location of our work

Traditionally, compilers consider the function as the unit of compilation. The
reason for this is that functions are a self contained entity and therefore provide
a convenient way for partitioning the compilation process. The process of com-
pilation may include optimisations, prepass scheduling, register allocation and
postpass scheduling. Although there have been attempts to take other compil-
ation units, like in [13], we will �rst concentrate our work with function-based
compilation.

Each function usually contains several basic blocks which are connected with
each other to form regions. The term 'region' has di�erent interpretations in the
literature, but for us, we mean a group of blocks that are strongly connected.

3.1.3 De�nitions

A region is a part of a program in which these basic blocks are strongly connected.
Let A and B be two basic blocks of a region. A is said to \dominate" B (A dom

B), if for all the paths from the region's entry to B, A appears in them. Similarly,
B \post-dominates" A (B post A), if B appears on all the paths from A to the
region's exit. Figure 4 (a) depicts a region with its entry and exit nodes added.
We can see that block 1 dominates all the other blocks because from the entry we
�nd 1 in every path to any particular block. Similarly, block 7 post-dominates the
rest of the other blocks as it appears from any block to the region's exit.

If both conditions hold true for blocks A and B, it is said that A is equivalent
to B [6]. This is an important characteristic because it means that should A be
executed, then B will de�nitely be executed. In practice, A and B can be executed
even in parallel, as long as they respect their data dependencies. They are said
to be completely control-independent. In the example, only blocks 1 and 7 full�ll
both de�nitions, thus they are equivalent. The dotted line in Figure 4 (b) shows
graphically the equivalence property between blocks 1 and 7.

3.1.4 Local scheduler extension

The natural extension for the local scheduler is to design and implement a global
scheduler based on the PTD heuristic. We have shown that by reducing the
number of penalties within basic blocks we get good performance improvements.

The dominator and post-dominator de�nitions allow us to perform code motion
beyond basic blocks without speculation and without duplication. Speculation here
refers to the movement of an instruction above a branch or below a join; when an
instruction is moved below a branch or above a join, there is a need to duplicate
it in order to preserve the semantics of the program. We will pay attention to the
impact of speculation and duplication in the processor performance: too much

8

7

2

6

5

Entry

4

1

2

4 5

6

7

3

Exit

Entry

T F

T

F

T
F

1

3

FT

T TF

Figure 4: (a) CFG of a region and (b) its reduced representation

speculation leads to code with many instructions being executed needlessly, while
duplication leads to code expansion. We will need the use of pro�le information
to guide us with the transformations.

The local PTD scheduler minimises each basic block penalty measure by per-
forming local movement of instructions. Once this has been done, the global
motion of instructions can be applied in the same way to reduce penalties from
two di�erent blocks. As each basic block has its own measure, we can see a global

measure as the total amount of penalties in a region. Since the idea is to reduce
each basic block's penalty measure, it would appear that getting the minimum
from each one would represent the minimal global measure. The possible advant-
age of this is that we are not required to apply the local scheduler after the global
transformations, although we will compare both e�ects.

These ideas di�er from [6] in several ways. First, their global scheduler is
basically a global list scheduler where the ready list consists of instructions from
a basic block and its equivalent blocks. Secondly, they apply two heuristics to
each instruction one called delay heuristic that gets the maximum accumulative
delay from its successors, and a critical-path heuristic that computes a measure
of time needed to complete the execution of the successors. A list of priorities is
given in the paper to select between ready instructions at the same time in the
scheduling process. Lastly, they use the local scheduler at the end to correct the
global decisions over the local ones.

The approach in [21] is also based on a list scheduler and they consider the
critical-path length, the critical resource usage and the register pressure in their
heuristics. The critical-path length information is derived from both local and
regional components.

9

Another di�erence with this work is in the choice of desirability factors: the
factors taken into account are register pressure, speculation and list scheduling
heuristics. In our work, the primary desirability factors are the PTD heuristic
and the utilisation of concurrent resources. We will investigate in the future other
possible factors that might contribute to improving the performance of the global
scheduler.

3.1.5 Low complexity algorithms

Another goal in our research is to continue the line of low complexity time for the
global scheduler. Moreno et al [22] use �(n2) complexity in their algorithms where
necessary4. So far, the complexity of the algorithms for computing the dominator
and post-dominator sets for each basic block in a region is �(E), where E is the
number of edges in the region; for the equivalent set, the complexity is �(N) with
N being the number of basic blocks5.

3.1.6 Work to be done

� A global memory disambiguation mechanism. At present, we have assumed
data dependencies for all memory references. It is apparent that these de-
pendencies will limit the scope for movements not only locally but globally
as well. We �rst have to implement a memory disambiguation mechanism
in order to release these constraints.

� Functions to check-and-update data dependencies globally in an e�cient
manner.

� Implement the routines for the global scheduler. Integrate the previous
points, the pro�le information and the PTD measure.

� Investigate if the PTD criteria is a good justi�cation to speculate the move-
ment of an instruction. We need very good reasons to justify the movement
of an instruction speculatively without pro�le information.

� Modify the simulator in order to simulate traces and not to execute the
instructions. This will allow us to simulate larger programs.

� We need further comparisons with the other approaches regarding register
pressure and possibly with a global list scheduler.

3.1.7 Measuring the performance

The methodology to measure the e�ectiveness of our global scheduler can be
viewed in two main phases: Firstly, as the global scheduler will be an exten-
sion of a local (PTD) scheduler, we will compare its performance improvement
against the local scheduler. This position seems reasonable and can be justi�ed

4This leaves open the question whether some algorithms may have higher complexity times.
5Given the binary-tree structure of the regions, we have at most 2N edges.

10

by the fact that work in the �eld usually assumes the same. Secondly, we can
measure the global compilation overhead against the local time and then relate it
with the span performance. This will give us an idea as to how costly the global
transformations are.

We therefore propose performance comparisons between 1) the PTD local
scheduler alone and the PTD scheduler with global code motion, and 2) between
both list schedulers alone and with their counterparts with global motion imple-
mented. We plan to compare as well 3) the compilation times between the PTD
version (both local and global) and 4) the list schedulers (local and with code
motion). We intend to have a clear view of the costs of these implementations in
relation with their performances.

3.2 Global optimiser

The transformation of regions can be located in the optimisations that are inde-
pendent of the target. By this we understand that it would bene�t the performance
of a program regardless of the nature of the architecture. However, among the
common transformations that we can �nd in the literature, we will concentrate on
those that speci�cally enable more ILP in a basic block term.

Although Figure 3 shows the need of number and type of resources in the
architecture for the optimiser, these parameters are not strictly necessary. They
can be used to help the optimiser to distribute the parallelism through the regions.
In this section we discuss the issues around the global optimiser.

3.2.1 Related work

The trace scheduler [10][20] is a global optimisation technique that uses pro�le
information to select a trace through the program. The trace is viewed as a block
and it is scheduled with a list scheduler. Code motion is performed through the
on-trace path at the expense of increasing compensation code in the o�-trace.
Sweany [29] proposes a variation of the trace scheduler to avoid the compensation
code. The sperblock [14] is similar to trace scheduling with the di�erence that
superblocks are single entry sub-graphs with no join points. All of these techniques
use the list scheduler to optimise the code on-trace with appropriate heuristics
which is the major di�erence to our work.

Region transformations are applied to programs in order to increase coarse
and �ne grain parallelism. The detection of coarse grain parallelism is usually
performed with the source code, while for �ne grain parallelism, the use of inter-
mediate code or even assembly code is used. At present we are interested in �ne
grain or ILP optimisations that can be speci�cally helpful for scalar and super-
scalar machines.

The following region transformations are described in [12] and we will discuss
each one with their relevances to an asynchronous architecture.

11

� �unroll

Loop unrolling is a well known technique to increase the amount of ILP of
loops. Our idea of unrolling n times a loop implies to create n copies of the
body of the loop in order to have a new basic block with those n copies on it.
This will e�ectively increase the number of possible concurrent instructions.

However, as we see the loop unrolling de�nition in [12], the original n-iteration
loop is transformed in two basic blocks, one being a m-iteration loop while
the other being n�m iteration as it can be seen in Figure 5 (a). This means
that the new basic block has a side-entry from its tail. This de�nition has
two di�erences with the above de�nition: �rst, the size of the basic block is
constant, thus there are no di�erences (no advantages) if the loop is unrolled
once or more times. Secondly, the new side-entry presumably would avoid
the merger of another basic block. If the merger is done anyway it would
introduce more executions of that basic block (see Figure 5 (b)). We believe
that our de�nition may lead to better improvements than the last one.

Loop unrolling is an optimising technique that distributes the parallelism of
a program outside the loop. This gain can equally bene�t both synchronous
and asynchronous architectures.

2

1

n

L i

R i

n

L i

R i

n-m

m

2

1

n-m 3

m

n-m 3

m

1

2

Figure 5: Unroll transformation: (a) shows a region (Ri) and a n-iteration loop
(Li) and their transformation, (b) shows the interpretation of this transformation.
The third picture in (b) depicts the merger of blocks 1 and 2 inside the new loop.
This might be a big execution overhead.

� �invar

This transformation identi�es code independent from the iterations of a loop
(called invariant code motion elsewhere in the literature) which in practice
means that the redundancies are removed away from the body of the loop.
For our purposes, this kind of optimisations can be performed at a higher
level for semantic reasons. It is more sensible to analyse the statements of
a loop with source code than with assembly code. We can assume that this
kind of redundance optimisations are already applied for us.

Again, invariant code motion bene�ts synchronous or asynchronous targets
in the same way as it removes the redundancies at a high level in the code.

12

� �move

The �move transformation describes in general, code motion. Their de�nition
of code motion does not respect speculation and unnecessary computations,
and they argue that this does not lead to longer execution times. The
justi�cation is that this is only done if the parallelism in the destiny region
has insu�cient parallelism.

Code motion of instructions or code motion of regions has to be done with
some notion of the architecture. Although we are not sure if this notion has
to imply a synchronous/asynchronous target, we believe that the coordina-
tion between the target and the optimiser is a matter of our concern. The
notion could be simply as to the number and type of units in the architecture.

At the moment we are interested in the code motion that covers the PTD
heuristic and in the beginning we will look to code motion without specula-
tion as described in the last section.

� �copy

This transformation is the generalisation of tail duplication or node splitting.
Tail duplication refers to the duplication of a node and its edges6. �copy
basically duplicates more than one region.

This transformation was originally applied to break cycles of dependences
in order to generate better code for parallel machines as it helps to reduce
communication and synchronisation costs [9]. Mueller and Whalley [23]
propose code replication to avoid conditional branches. The resultant code
contains simpli�ed control ow that bene�ts vectorising and parallelising
compilers.

We can see that this transformation can lead to useful optimisations without
any speculative nor unnecessary executions and its only drawback is code
expansion.

� �merge

The �merge transformation collapses two regions 7. The equivalent for us
would be two basic blocks under the same set of control dependencies (data
sequentiality) that can be merged.

In the next section �copy and �merge are discussed in more detail with their
relevance to our work.

3.2.2 Region transformation

Our idea of a global optimiser consists of transformations on basic blocks that
are control-independent. As described in Section 3.1.3 the equivalence property

6A tail is a basic block with more than one entry edge to it
7Region in [12] represents parts of the program with the same set of control dependencies

13

is su�cient to determine the control independence between basic blocks. This is
necessary to get a reduced representation as shown in Figure 4 (b), since in a
control ow graph (CFG in 4 (a)) it is not trivial to know under which conditions
a block is reached.

Among the di�erent region transformations discussed in [12] for a LIW archi-
tecture, we �nd that �copy and �merge are useful for a scalar or superscalar processor
because they do not introduce speculative executions.

In our representation, once the control dependencies have been sorted, the
global optimiser can identify the nodes that are independent from the ow of
control (blocks 4-6 and 5-6) to use tail duplication (see Figure 6 (a)). This
enables another possible transformation that is the merger of the split nodes (6
and 60) into their predecessors (4 and 5 respectively). Figure 6 (b) shows this
transformation.

7

2

5

Entry

4

6

7

2

Entry

6’

4

6

5

6’

1

3

FT

T TF

1

3

FT

T TF

Figure 6: a) Tail duplication and b) node merger from the CFG in Figure 4

Although code duplication is not a good characteristic, the advantages of more
ILP available by increasing the size of basic blocks are apparent. Furthermore,
another point is that this possible improvement is independent of the di�erent
probabilities from the original paths (2-4-6 or 2-5-6), which in turn means that we
do not need pro�le information to take decisions.

If we exhaustively perform tail duplication along the regions, the code expan-
sion has an upper bound from the order of �(p 2p) where p is the number of
if-then-else in the region.

3.2.3 Work to be done

� Implement the region transformation functions.

� Investigate the trade-o�s between the cost of code expansion and the per-
formance by joining basic blocks after tail duplication.

� Look at possible heuristics to determine when it is best to perform tail
duplication.

14

� Investigate other possible useful region transformations that may suit asyn-
chronous architectures.

4 A motivation example

We now present three benchmarks from the control-intensive set with the global
optimisations hand-coded to test the potential of both techniques. Table 1 shows
the performance improvements of a quick sort for four di�erent optimisations:
Local represents local optimisations only; Tail shows the transformation of re-
gions by tail duplication; Motion takes into account the global code motion of
instructions, and T&M represents the combination of Tail and Motion optimisa-
tions. Table 2 and Table 3 show the results for the Hanoi and integer matrix
multiplication benchmarks respectively.

For these simulations we have compiled the benchmarks assuming in�nite
number of resources to eliminate the anti and output dependencies produced
by performing register allocation before scheduling. Thus, the opportunities for
global motion are increased. However, the the scheduling process has been done
without memory disambiguation which restraints considerably the options for local
scheduling after the movement of loads.

Conf. Approach SUIF GM. sch. Bal. sch. PTD sch. *

Local* 0.00 % 11.89 % 11.86 % 16.73 % 0.00 %
1 AU Tail 0.00 % 10.54 % 11.49 % 17.01 %

Motion 4.05 % 15.08 % 17.14 % 22.87 %
T&M 3.96 % 17.94 % 21.29 % 27.67 %

Local 0.00 % 23.31 % 23.41 % 23.24 % 15.05 %
2 AU Tail 0.00 % 23.75 % 23.29 % 23.32 %

Motion 7.08 % 30.47 % 34.22 % 28.08 %
T&M 7.05 % 39.61 % 43.06 % 37.18 %

Local 0.00 % 27.99 % 29.51 % 25.20 % 15.74 %
3 AU Tail 0.00 % 27.43 % 29.30 % 25.19 %

Motion 7.16 % 35.82 % 42.60 % 30.25 %
T&M 7.10 % 46.33 % 52.83 % 40.82 %

Local 0.00 % 30.29 % 31.29 % 25.04 % 15.75 %
4 AU Tail 0.00 % 30.23 % 30.99 % 25.04 %

Motion 7.14 % 38.75 % 45.04 % 30.12 %
T&M 7.10 % 49.90 % 55.02 % 40.15 %

Table 1: Performance comparison for the Bubble sort benchmark.

The tables are divided in to four groups representing simulations under four
di�erent architectures: 1 AU, 2 AU, 3 AU and 4 AU con�gurations. The percent-
age improvements in each block are all compared against the Local base case in

15

that block. The star in the last column means the percentage improvement from
each unscheduled code (SUIF) under the scaling architectures against the very
base case (SUIF code under the 1 AU con�guration).

Conf. Approach SUIF GM. sch. Bal. sch. PTD sch. *

Local* 0.00 % 2.43 % 5.83 % 8.75 % 0.00 %
1 AU Tail 0.00 % 2.43 % 5.81 % 8.75 %

Motion 0.01 % 2.42 % 5.79 % 8.71 %
T&M 0.01 % 2.42 % 5.79 % 8.71 %

Local 0.00 % 2.79 % 4.99 % 5.90 % 9.69 %
2 AU Tail 0.00 % 2.79 % 4.98 % 5.90 %

Motion 0.01 % 2.77 % 4.96 % 5.92 %
T&M 0.01 % 2.77 % 4.96 % 5.92 %

Local 0.00 % 3.71 % 5.94 % 4.88 % 10.76 %
3 AU Tail 0.00 % 3.71 % 5.94 % 6.79 %

Motion 0.01 % 3.72 % 5.91 % 6.84 %
T&M 0.01 % 3.72 % 5.91 % 6.84 %

Local 0.00 % 3.55 % 5.83 % 5.94 % 10.93 %
4 AU Tail 0.00 % 3.55 % 5.84 % 6.90 %

Motion 0.01 % 3.50 % 5.81 % 6.94 %
T&M 0.01 % 3.50 % 5.81 % 6.94 %

Table 2: Performance comparison for the Hanoi benchmark.

As it can be seen, the improvements from the Tail optimisations are basically
the same to those achieved from the Local approach. This is due to the fact that
the merger of a block to its tail introduces many memory-memory dependencies
that the memory disambiguation mechanism has to remove. In the future this
mechanism should enable better results.

In the other hand, the code motion performances show that this technique has a
big impact over the local schedulers. Furthermore, this was done by moving only 17
instructions in the Bubble sort, 8 in the Hanoi benchmark and 10 instructions for
the matrix multiplication one. If we accomplish our goal towards the complexity
of the global scheduler, the overhead of performing these global transformations
will be compensated by their improvements.

We have to say that the integer matrix multiplication benchmark does not
have any \tail" nodes, so we could not apply the Tail duplication and merger
optimisation, therefore the same results as in the Local approach.

One thing that we will carefully look is the scalability of the PTD sched-
uler. The Bubble sort benchmark experiences important improvements with the
global optimisations when the architecture scales, but the PTD scheduler seems to
loose part of this performance. This degradation does not appear when we apply
scheduling after register allocation as it can be seen in the results in Appendix A.

16

Finally, the combination of global code motion and tail duplication (G&T)
exposes a scope for improvements that is the true motivation for performing these
kind of optimisations.

We have seen during these transformations the importance of the decisions to
apply tail duplication and code motion. For the former, we believe that it will
be bene�cial where the merger of blocks does not include any branches, which
e�ectively means that the size of the block grows; for the latter, it will be decisive
the use of the PTD measure to evaluate the bene�ts by moving an instruction.
Among the 17 instructions that were moved in the Bubble sort benchmark, half
of them were really useful.

Conf. Approach SUIF GM. sch. Bal. sch. PTD sch. *

Local* 0.00 % 21.83 % 17.85 % 24.68 % 0.00 %
1 AU Tail 0.00 % 21.83 % 17.85 % 24.68 %

Motion 1.19 % 22.12 % 18.18 % 25.33 %
T&M 1.19 % 22.12 % 18.18 % 25.33 %

Local 0.00 % 43.42 % 36.21 % 43.48 % 20.54 %
2 AU Tail 0.00 % 43.42 % 36.21 % 43.48 %

Motion 1.83 % 44.78 % 37.75 % 44.02 %
T&M 1.83 % 44.78 % 37.75 % 44.02 %

Local 0.00 % 47.57 % 40.00 % 48.99 % 26.20 %
3 AU Tail 0.00 % 47.57 % 40.00 % 48.99 %

Motion 1.99 % 48.45 % 41.62 % 50.18 %
T&M 1.99 % 48.45 % 41.62 % 50.18 %

Local 0.00 % 47.96 % 40.82 % 46.80 % 26.96 %
4 AU Tail 0.00 % 47.96 % 40.82 % 46.80 %

Motion 1.96 % 49.07 % 42.38 % 47.85 %
T&M 1.96 % 49.07 % 42.38 % 47.85 %

Table 3: Performance comparison for the integer matrix multiplication benchmark.

17

5 Thesis outline

The following is an early outline of how the Thesis should look like.

� Chapter 1. Introduction

{ MAP description (model)

{ Scheduling problem

� Chapter 2. Local scheduler

{ Early schedulers

{ List schedulers

� Characteristics

� Common heuristics

{ PTD scheduler

� PTD heuristic (idea)

� Algorithm

� Complexity

� Comparisons

� Results

� Future work (improvements)

� Limitations

� Chapter 3. Global scheduler

{ Related work

� Code motion

� Trace scheduling

� Software pipelining

� Superblock scheduling

{ De�nitions

{ Code motion

� Requirements

� Program representation

� Memory disambiguation

� Local scheduler (cooper-

ation)

� Approaches

� Heuristics based on the
PTD measure

� Speculation and duplica-

tion

� Algorithms complexity

{ Results

� Chapter 4. Global optimiser

{ Related work

� Tail duplication

� Loop unrolling

� Function inlining

� Region scheduling

{ Location of the global optimiser

{ Global optimiser

� Tail duplication

� Block merger

{ Results

{ Limitations ?

� Chapter 5. Conclusions and future work

{ Summary

{ Discussion

{ Future work (open questions)

18

References

[1] Arvind, Damal; Rebello, Vinod. On the Performance Evaluation of Asynchronous Processor
Architectures. In Proc. 3rd. Int. Workshop on Modelling Analysis and Simulation of Com-

puter and Telecommunication Systems MASCOTS'95, January 1995, pp. 100-105, IEEE

Press.

[2] Arvind, Damal; Mullins, Robert. Micronets: A Model for decentralising Control in Asyn-

chronous Processor Architectures. In 2nd. Working Conference on Asynchronous Design

Methodologies. May 1995, pp. 190-199, IEEE Press.

[3] Arvind, Damal; Rebello, Vinod. Static Scheduling of instructions on Micronet-based Asyn-

chronous Processors. In Proc. 2th. Int. Symp. on Advanced Research on Asynchronous
Circuits and Systems ASYNC'96 March 1996, pp. 80-91, IEEE Press.

[4] Arvind, Damal; Sotelo-Salazar, Salvador. Scheduling Instructions with Uncertain Latencies

in Asynchronous Architectures. In Proc. 3rd. Int. Euro-Par Conference. August 1997, pp.

771-778.

[5] Banerjia, Sanjeev; Havanki, William; Conte, Thomas. Treegion Scheduling for Highly Par-

allel Processors. In Proc. 3rd. Int. Euro-Par Conference. August 1997, pp. 1074-1078.

[6] Bernstein, David; Rodeh, Michael. Global Instruction Scheduling for Superscalar Machines.

ACM SIGPLAN '91. Conf. on Programming Language Design and Implementation. June

1991, pp. 241-255.

[7] Click, Cli�. Global Code Motion Global Value Numbering. ACM SIGPLAN. Conf. Program-
ming Language design and Implementation. June 1995, pp. 246-257.

[8] Feo, John. An analysis of the computational and parallel complexity of the Livermore Loops.

Parallel Computing Vol. 7, 1988, pp. 163-185.

[9] Ferrante, Jeanne; Ottenstein, Karl; Warren, Joe. The Program Dependence Graph and its

Use in Optimization. ACT Trans. on Pragramming Languages and Systems, Vol. 9, No. 3,
July 1987, pp. 319-349.

[10] Fisher, Joseph. Trace Scheduling: A Technique for Global Microcode Compaction. IEEE

Transactions on Computers. vol. C-30, no. 7, July 1981, pp. 478-490.

[11] Gibbons, Phillip; Muchnick, Steven. E�cient Instruction Scheduling for a Pipelined Archi-

tecture. ACM SIGPLAN Symp. on Compiler Construction, July 1986, pp. 11-16.

[12] Gupta, Rajiv; So�a, Mary Lou. Region Scheduling: An Approach for Detecting and Redis-

tributing Parallelism. IEEE Trans. on Software Engineering, Vol. 16. No. 4. April 1990, pp.

421-431.

[13] Hank, Richard; Hwu, Wen-mei; Rau, Ramakrishna. Region-Based Compilation: An Intro-

duction and Motivation. Proc. 28th. Int. Symp. on Microarchitectures MICRO 28. 1995,
pp. 158-168.

[14] Hwu, Wen-Mei et al. The Superblock: An E�ective Technique for VLIW and Superscalar

Compilation. The Journal of Supercomputing 7. 1993, pp. 229-248.

[15] Kerns, Daniel; Eggers, Susan. Balanced Scheduling: Instruction Scheduling when Memory

Latency is uncertain. Transactions on computers. 1993, pp. 278-289.

19

[16] Knoop, Jens; R�uthing, Oliver; Ste�en, Bernhard. The Power of Assignment Motion. ACM

SIGPLAN. Conf. Programming Language design and Implementation. June 1995, pp. 233-
245.

[17] Ko, Michael. Instruction Scheduling for Micronet-Based Asynchronous Processors. M.Sc.

Project Report. 1995, University of Edinburgh, Department of Computer Science.

[18] Lam, Monica; Wilson, Robert; Limits of Control Flow on Parallelism. In Proc. 19th. Int.

Symp. on Computer Architecture. May 1992, pp. 43-57.

[19] Lo, Jack; Eggers, Susan. Improving Balanced Scheduling with Compiler Optimizations that
Increase Instruction-Level Parallelism. SIGPLAN Notices 1995, pp. 151-161.

[20] Lowney, Geo�rey et al. The Multiow Trace Scheduling Compiler. The Journal of Super-

computing 7. 1993, pp. 51-142.

[21] Mahadevan, Uma; Ramakrishnan, Sridhar. Instruction Scheduling over Regions: A Frame-

work for Scheduling Across Basic Blocks. pp. 419-434.

[22] Moreno, Jaime; Moudgill, Mayan; Miranda, R. Architecture compiler and simulation of a

tree-based VLIW processor. IBM Research Report RC20495, Research Division, Computer

Sciences/Mathematics. July 1996.

[23] Mueller, Frank; Whalley David. Avoiding Conditional Branches by Code Replication. In

Proc. ACM SIGPLAN 95 PLDI, June 1995, pp. 56-66.

[24] Palem, Krishna; Simons, Barbara. Scheduling Time-Critical Instructions on RISC Ma-

chines. In Proc. Transactions on Programming Languages and Systems. September 1993,

pp. 632-658.

[25] Proebsting, Todd; Fischer, Charles. Linear-time, Optimal Code Scheduling for Delayed-Load

Architectures. SIGPLAN 1991, pp. 256-267.

[26] Rau, Ramakrishna; Fisher, Joseph. Instruction-Level Parallel Processing: History, Over-
view, and Perspective. Journal of Supercomputing 7, 1993, pp. 9-50.

[27] Rebello, Vinod. On the Distribution of Control in Asynchronous Processor Architectures.

Ph.D. Thesis, Department of Computer Science, University of Edinburgh, November 1996.

[28] Sotelo-Salazar, Salvador. Static Analysis and Scheduling for Asynchronous Processor Ar-

chitectures. Thesis Proposal. University of Edinburgh, Department of Computer Science.

September 1996.

[29] Sweany, Philip. Inter-block Code Motion without Copies. Ph.D Thesis, Department of Com-
puter Science, Colorado State University. Fall 1992.

[30] Theobald, Kevin; Gao, Guang; Hendren, Laurie. On the Limits of Program Parallelism

and its Smoothability. ACAPS Technical Memo 40 McGill University, School of Computer

Science.

[31] Ullman, John. NP-complete scheduling problems. Journal of Computer and Systems Sci-
ences. October 1975, 384-393.

20

A Comparison of the schedulers

Benchmark SUIF GM. sch. Bal. sch. PTD sch.

Loop1 0.00 % 16.32 % 12.43 % 20.93 %
Loop2 0.00 % 25.49 % 30.26 % 30.72 %
Loop3 0.00 % 17.25 % 19.49 % 28.01 %
Loop4 0.00 % 13.47 % 21.84 % 27.55 %
Loop5 0.00 % 21.98 % 18.11 % 26.39 %
Loop6 0.00 % 21.52 % 23.39 % 26.84 %
Loop7 0.00 % 9.63 % 10.05 % 11.37 %
Loop8 0.00 % 13.26 % 13.45 % 15.07 %
Loop9 0.00 % 4.85 % 5.17 % 11.28 %
Loop10 0.00 % 23.03 % 22.99 % 29.74 %
Loop11 0.00 % 19.42 % 22.60 % 28.48 %
Loop12 0.00 % 19.40 % 22.59 % 28.45 %
Loop13 0.00 % 24.95 % 26.82 % 29.57 %
Loop14 0.00 % 21.41 % 22.80 % 29.90 %

Average 0.00 % 17.99 % 19.42 % 24.59 %

Perm 0.00 % 11.15 % 9.60 % 12.83 %
Heapsort 0.00 % 9.47 % 10.23 % 13.32 %
Clinpack 0.00 % 15.24 % 15.09 % 19.79 %
Hanoi 0.00 % 2.44 % 5.86 % 8.78 %
Quick 0.00 % 5.27 % 5.60 % 8.49 %
Bubble 0.00 % 14.70 % 12.95 % 15.54 %
Intmm 0.00 % 6.85 % 7.07 % 11.18 %
Queens 0.00 % 5.62 % 6.03 % 9.41 %
Subloops 0.00 % 23.62 % 23.00 % 27.45 %

Average 0.00 % 10.48 % 10.60 % 14.09 %

Total
Average 0.00 % 15.06 % 15.97 % 20.48 %

Table 4: Performance comparison for the 1 AU con�guration.

21

Benchmark SUIF GM. sch. Bal. sch. PTD sch.

Loop1 0.00 % 28.33 % 17.82 % 27.88 %
Loop2 0.00 % 50.82 % 49.95 % 50.96 %
Loop3 0.00 % 39.18 % 39.70 % 42.62 %
Loop4 0.00 % 31.21 % 34.07 % 38.53 %
Loop5 0.00 % 45.38 % 35.13 % 44.11 %
Loop6 0.00 % 43.03 % 42.04 % 43.18 %
Loop7 0.00 % 8.94 % 9.24 % 9.06 %
Loop8 0.00 % 20.77 % 18.81 % 19.38 %
Loop9 0.00 % 6.73 % 2.15 % 9.43 %
Loop10 0.00 % 50.82 % 49.73 % 48.57 %
Loop11 0.00 % 46.49 % 44.29 % 47.88 %
Loop12 0.00 % 46.44 % 44.32 % 47.94 %
Loop13 0.00 % 50.49 % 43.88 % 53.17 %
Loop14 0.00 % 36.70 % 37.73 % 39.77 %

Average 0.00 % 35.38 % 33.49 % 37.32 %

Perm 0.00 % 11.57 % 6.72 % 11.69 %
Heapsort 0.00 % 12.22 % 12.77 % 11.02 %
Clinpack 0.00 % 28.17 % 25.14 % 28.24 %
Hanoi 0.00 % 2.78 % 4.99 % 5.98 %
Quick 0.00 % 10.70 % 10.31 % 11.23 %
Bubble 0.00 % 22.71 % 23.26 % 23.21 %
Intmm 0.00 % 12.43 % 11.99 % 11.42 %
Queens 0.00 % 7.59 % 7.66 % 6.50 %
Subloops 0.00 % 52.88 % 43.49 % 50.57 %

Average 0.00 % 17.89 % 16.26 % 17.76 %

Total
Average 0.00 % 28.54 % 26.75 % 29.67 %

Table 5: Performance comparison for the 2 AU con�guration.

22

Benchmark SUIF GM. sch. Bal. sch. PTD sch.

Loop1 0.00 % 34.19 % 21.92 % 36.11 %
Loop2 0.00 % 58.86 % 54.21 % 61.51 %
Loop3 0.00 % 48.01 % 52.83 % 50.92 %
Loop4 0.00 % 40.03 % 39.62 % 48.49 %
Loop5 0.00 % 50.81 % 37.47 % 52.64 %
Loop6 0.00 % 44.70 % 40.78 % 47.52 %
Loop7 0.00 % 8.67 % 8.92 % 8.70 %
Loop8 0.00 % 21.69 % 20.09 % 20.61 %
Loop9 0.00 % 7.18 % 5.62 % 7.29 %
Loop10 0.00 % 53.91 % 50.13 % 52.71 %
Loop11 0.00 % 54.43 % 50.27 % 57.41 %
Loop12 0.00 % 54.38 % 50.26 % 57.34 %
Loop13 0.00 % 63.21 % 57.44 % 67.91 %
Loop14 0.00 % 38.47 % 38.94 % 40.62 %

Average 0.00 % 41.32 % 37.75 % 43.56 %

Perm 0.00 % 12.25 % 7.22 % 11.85 %
Heapsort 0.00 % 11.30 % 11.89 % 9.85 %
Clinpack 0.00 % 27.14 % 25.25 % 25.30 %
Hanoi 0.00 % 3.74 % 5.95 % 6.85 %
Quick 0.00 % 9.90 % 9.95 % 9.99 %
Bubble 0.00 % 26.72 % 27.76 % 28.00 %
Intmm 0.00 % 11.51 % 10.74 % 10.40 %
Queens 0.00 % 6.67 % 6.74 % 5.51 %
Subloops 0.00 % 61.87 % 52.71 % 61.61 %

Average 0.00 % 19.01 % 17.58 % 18.82 %

Total
Average 0.00 % 32.59 % 29.86 % 33.88 %

Table 6: Performance comparison for the 3 AU con�guration.

23

Benchmark SUIF GM. sch. Bal. sch. PTD sch.

Loop1 0.00 % 34.02 % 21.73 % 37.15 %
Loop2 0.00 % 59.29 % 55.74 % 63.29 %
Loop3 0.00 % 48.43 % 44.52 % 54.54 %
Loop4 0.00 % 39.82 % 40.72 % 49.24 %
Loop5 0.00 % 50.94 % 37.30 % 53.87 %
Loop6 0.00 % 44.94 % 41.66 % 48.17 %
Loop7 0.00 % 8.87 % 8.95 % 8.73 %
Loop8 0.00 % 21.61 % 19.98 % 20.89 %
Loop9 0.00 % 6.90 % 5.45 % 7.26 %
Loop10 0.00 % 53.69 % 51.14 % 51.50 %
Loop11 0.00 % 54.78 % 50.60 % 58.53 %
Loop12 0.00 % 54.90 % 50.65 % 58.72 %
Loop13 0.00 % 62.20 % 57.48 % 67.24 %
Loop14 0.00 % 38.86 % 38.73 % 40.20 %

Average 0.00 % 41.38 % 37.48 % 44.23 %

Perm 0.00 % 13.52 % 7.03 % 13.07 %
Heapsort 0.00 % 11.17 % 11.82 % 9.91 %
Clinpack 0.00 % 26.64 % 24.87 % 25.25 %
Hanoi 0.00 % 3.56 % 5.87 % 6.94 %
Quick 0.00 % 9.69 % 9.77 % 9.99 %
Bubble 0.00 % 28.67 % 28.83 % 27.70 %
Intmm 0.00 % 11.27 % 10.60 % 10.21 %
Queens 0.00 % 6.62 % 6.69 % 5.57 %
Subloops 0.00 % 62.44 % 53.24 % 61.51 %

Average 0.00 % 19.29 % 17.64 % 18.91 %

Total
Average 0.00 % 32.73 % 29.71 % 34.33 %

Table 7: Performance comparison for the 4 AU con�guration.

24

