
8th Workshop on Process Algebra and
Stochastically Timed Activities

PASTA 2009

PASTA: Wednesday 26th August 2009
Bio-PASTA: Thursday 27th August 2009

Informatics Forum
University of Edinburgh

UK

Preface

Welcome to the proceedings of PASTA and Bio-PASTA 2009. This is our
favourite scientific meeting of the year bringing together established researchers,
early career researchers and PhD students all intent on a free and frank exchange
of important ideas and results. The nature of the group of attendees at the av-
erage PASTA workshop has always been conducive to just such a well-focused
forum as each are able to understand and appreciate each others’ work. In ad-
dition PASTA has a proven record of fostering successful collaboration efforts
from across institutes.

This is the eighth annual meeting for collaborators interested in stochas-
tic modelling. Continuing from last year, the workshop is now organised as
two themed days; one for researchers interested in biological modelling and the
specific challenges involved therein, and the other for researchers with a more
general interest in modelling through stochastic process algebras.

As with every year our mission at the PASTA workshop is to have as much
fun as we possibly can with a light sprinkling of scientific advancement. This
year we are competing with the attractions of the Edinburgh Festival and we
hope this will add to the enjoyment. Thanks for attending PASTA.

Special thanks to the Center for Systems Biology in Edinburgh (CSBE) and
the Scottish Informatics and Computer Science Alliance (SICSA) for supporting
the workshop.

Allan Clark and Maria Luisa Guerriero
26th August 2009

Contents

I PASTA 3

1 Invited Talk: The hybrid way to fluid-flow approximation
Luca Bortolussi 5

2 Differential Analysis of PEPA Models
Mirco Tribastone 7

3 A functional central limit theorem for PEPA
Richard Hayden and Jeremy Bradley 13

4 Qualitative Reasoning of Stochastic Models and the Role of
Flux
Paolo Ballarini, Maria Luisa Guerriero and Jane Hillston 25

5 A new deadlock checking algorithm for PEPA
Jie Ding and Jane Hillston 35

6 A general result for deriving product-form solutions in Marko-
vian models
Andrea Marin and Maria Grazia Vigliotti 43

7 Using ODEs from PEPA models to derive asymptotic solutions
for a class of closed queueing networks
Nigel Thomas 49

8 Response-time Profiles for PEPA models compiled to ODEs
Allan Clark 57

9 Configuring Service-Oriented Systems using PEPA and AI Plan-
ning
Amanda Coles, Andrew Coles and Stephen Gilmore 66

10 Abstraction and Model Checking in the Eclipse PEPA Plug-In
Michael Smith 73

11 Concerning Performance Driven Cryptographic Protocol De-
velopment
Nicholas O’Shea 85

iii

II Bio-PASTA 91

12 Invited Talk: A computational method based on temporal logic
for parameter search and robustness analysis of biological mod-
els
François Fages 93

13 Modelling Scaffold-mediated Crosstalk between the cAMP and
the Raf-1/MEK/ERK Pathways
Oana Andrei and Muffy Calder 95

14 Towards a process-calculi approach to study the evolution of
biological networks
Alessandro Romanel 103

15 Spatial extension of the stochastic Pi Calculus
Anton Stefanek, Maria Grazia Vigliotti and Jeremy Bradley 109

16 How restrictive is the current action decomposition property
for compression bisimulation?
Vashti Galpin 119

17 An overview of the Bio-PEPA Eclipse Plug-in
Adam Duguid 121

18 Efficient compositional simulation of circadian models using
Bio-PEPA
Stephen Gilmore and Konstantinos Markakis 133

19 On the Formalisation of Gradient Diffusion Models of Biolog-
ical Systems
Andrea Degasperi and Muffy Calder 139

20 Modelling the bubonic plague in a prairie dog burrow, a work
in progress
Soufiene Benkirane, Carron Shankland, Rachel Norman and
Chris McCaig 145

21 Studying the effects of adding spatiality to a process algebra
model
Savi Maharaj, Chris McCaig and Carron Shankland 153

22 From individual behaviour to population dynamics: changing
scale in models of superspreaders
Chris McCaig, Mike Begon, Carron Shankland and Rachel Nor-
man 159

Part I

PASTA

3

The hybrid way to fluid-flow approximation

— Invited Talk —

Luca Bortolussi
University of Trieste, Italy

Abstract

Discreteness and continuity are two opposite ways of describing the
world. However, there are many situations, from engines to cells, in
which an hybrid description, mixing both such ingredients, seems more
adequate. In this presentation, we focus on stochastic hybrid systems.
We present Piecewise Deterministic Markov Processes, and we provide
a simpler description language, Transition-Driven Stochastic Hybrid Au-
tomata. Then, we will see how such formalism can be used to define in
a simple way a stochastic hybrid semantics for HYPE (an hybrid process
algebra focussing on flows) and for PEPA. Finally, we discuss convergence
theorems for the PEPA case.

1

5

Differential Analysis of PEPA Models∗

Mirco Tribastone†

1 Introduction

Continuous-time Markov chains (CTMCs) are an established tool for the quantitative eval-
uation of systems, however the well-known problem of state-space explosion makes the
analysis intractable when the population sizes of the components under study are large. An
alternative technique for performance evaluation may be offered by deterministic models,
which use ordinary differential equations (ODEs) as the underlying mathematical structure,
approximating the temporal evolution of the population of inherently discrete entities in a
continuous fashion. Despite their apparently contrasting modelling approach, in many cir-
cumstances it is possible to establish a very useful relationship of convergence between the
stochastic and deterministic models, where the ODE is interpreted as the fluid limiting be-
haviour of a family of CTMCs associated with the model under evaluation and parametrised
by a system factor such as density or concentration [1].

The main contribution of this paper is to demonstrate that this result of deterministic
convergence holds for population models described with the process algebra PEPA [2]. This
objective is pursued by developing an operational semantics of the language which gives rise
to a compact symbolic representation of the CTMC of the model, from which it is possible to
infer the corresponding ODE representing its fluid limit. This semantics provides a formal
account of earlier approaches to deterministic interpretations of PEPA [3], and substantially
extends their scope of applicability by incorporating all the operators of the language and
removing earlier assumptions on the syntactical structure of the models amenable to this
analysis.

2 Population-based Semantics

The following example will be used throughout this section in order to illustrate the rationale
behind the population-based semantics of PEPA.

Example 1 (PEPA model with cooperation).

(ξ1,1) P def= (α, p).P ′

(ξ1,2) P ′ def= (β, p′).P
(ξ2,1) Q def= (α, q).Q ′

(ξ2,2) Q ′ def= (γ, q′).Q
System1

def= P [NP] BC
{α}

Q [NQ]

∗Extended abstract
†School of Informatics, The University of Edinburgh, Scotland, UK. Email: mtribast@inf.ed.ac.uk

7

The reduced context of a PEPA model abstracts away from the actual population levels,
considering one representative sequential component in place of a parallel composition of
identical (i.e., isomorphic) components. In the running example, the reduced context is

M def= P BC
{α}

Q .

This minimal form contains the necessary information to determine the state descriptor
in the numerical vector form (NVF).

Definition 1 (Numerical Vector Form). Let NC be the number of distinct sequential com-
ponents in M. Let Ci be the derivative set of the i-th component, i = 1, 2, . . . , NC and let
Ni be its size, i.e., Ni = |Ci|. Let Ci,j denote the j-th derivative of the i-th component,
j = 1, 2, . . . , Ni. The state descriptor in the NVF, denoted by ξ ∈ Zd, d =

∑NC

i=1 Ni, assigns
a coordinate, denoted by ξi,j, to each local derivative Ci,j and indicates the number of copies
in the system which exhibit that derivative.

Definition 2 (Initial State of the CTMC). The initial state of the CTMC is denoted by
δ ∈ Zd and gives an initial population level δi,j ≥ 0 to each local derivative Ci,j. Without
loss of generality we exclude the case in which all the derivatives of a sequential component
are set to 0, by subjecting δ to the condition

∑Ni

k=1 δi,k > 0, for all i.

The coordinates in the NVF of the sequential components in Example 1 are in parenthesis
alongside the definitions.

As with the Markovian interpretation, at the core of this semantics is the notion of
apparent rate. Here this concept is modified to take into account the interpretation of the
reduced context described above.

Definition 3 (Parametric Apparent Rate). Consider a process P composed by sequential
components Ci,j. The parametric apparent rate of action type α in component P, denoted by
r?
α (P , ξ), defines the overall rate at which the action type α can be performed by component

P as a function of the population sizes ξ of the sequential components of the system:

r?
α

(
P BC

L
Q , ξ

)
=

{
min (r?

α (P , ξ) , r?
α (Q , ξ)) if α ∈ L

r?
α (P , ξ) + r?

α (Q , ξ) if α 6∈ L

r?
α (P/L, ξ) =

{
r?
α (P , ξ) if α 6∈ L

0 if α ∈ L

r?
α (Ci,j , ξ) =

∑Ni

k=1 rα(Ci,k)ξi,k

In the last definition, the behaviour of the other derivatives in the same derivative set
of Ci,j is taken into account because each constituting sequential component in the reduced
context in fact represents an array of identical components, evolving through the local
derivatives Ci,k, 1 ≤ k ≤ d. In any state of the CTMC there may be at least one component
exhibiting each such derivative. These components will compete for the execution of some
shared action α, and the propensity of each derivative will be proportional to the population
level of the derivative and the individual rate of execution.

The population-based structured operational semantics for PEPA is shown in Table 1.
The rule for sequential components S?

0 constructs the relationship between the two se-
mantics. The premise is a transition of the Markovian semantics for a single sequential
component. By construction, the right hand side of the transition is in the same derivative

set, i.e., Ci,j
(α,r)−−−→ Ci′,j ′ ⇒ i = i′. Such a transition is said to be promoted to an inference

8 Differential Analysis of PEPA Models

Table 1: Population-based parametric structured operational semantics of PEPA. Transi-
tions are denoted by the symbol −−→? to distinguish them from the Markovian transitions
in PEPA which carry reals instead of functions.

Sequential Component
(Promotion Rule)

S?
0 :

Ci,j
(α,r)−−−→ Ci,j ′ Ci,j ∈ Ci

Ci,j
(α,rξi,j)−−−−−→? Ci,j ′

Constant

A?
0 :

P
(α,r(ξ))−−−−−→? P ′

A
(α,r(ξ))−−−−−→? P ′

, A def= P

Cooperation

C?
0 :

P
(α,r(ξ))−−−−−→? P ′

P BC
L

Q
(α,r(ξ))−−−−−→? P ′ BC

L
Q

, α 6∈ L C?
1 :

Q
(α,r(ξ))−−−−−→? Q ′

P BC
L

Q
(α,r(ξ))−−−−−→? P BC

L
Q ′

, α 6∈ L

C?
2 :

P
(α,r1(ξ))−−−−−−→? P ′ Q

(α,r2(ξ))−−−−−−→? Q ′

P BC
L

Q
(α,r(ξ))−−−−−→? P ′ BC

L
Q ′

, α ∈ L,

r(ξ) =
r1(ξ)

r?
α (P , ξ)

r2(ξ)
r?
α (Q , ξ)

min (r?
α (P , ξ) , r?

α (Q , ξ))

Hiding

H?
0 :

P
(α,r(ξ))−−−−−→? P ′

P/L
(α,r(ξ))−−−−−→? P ′/L

, α 6∈ L H?
1 :

P
(α,r(ξ))−−−−−→? P ′

P/L
(τ,r(ξ))−−−−−→? P ′/L

, α ∈ L

for the population-based semantics — the premise describes the behaviour of a single se-
quential component, whereas the conclusion gives the collective dynamics of the population
of components Ci,j . This population evolves at an overall rate which is the product of the
individual rate and the number of components exhibiting this local derivative. The other
rules are syntactically similar to their counterparts in the Markovian semantics, however in
all cases the derivations carry as rates functions of the population vector. The following
derivation tree gives a transition for the shared activity with regard to the reduced context
of Example 1.

P
(α,p)
−−−→ P ′

P
(α,pξ1,1)−−−−−−→? P ′

S?
0

Q
(α,q)
−−−→ Q ′

Q
(α,qξ2,1)−−−−−−→? Q ′

S?
0

P BC
{α}

Q
(α,min(pξ1,1,qξ2,1))−−−−−−−−−−−−−→? P ′ BC

{α}
Q ′

C?
2

However, this information is not sufficient to obtain the behaviour of the entire system
under consideration, because the derivative gives only the first-step behaviour of the process.
The collective dynamics of the system is represented by the notions of derivative set and
derivation graph of M in the population-based semantics, which are defined in a similar
way to their counterparts in the Markovian semantics.

Definition 4 (Parametric Derivative Set). The parametric derivative set of M, denoted by
ds?(M), is the smallest set of PEPA components which satisfies the following conditions:

Mirco Tribastone 9

• M ∈ ds?(M)

• If P ∈ ds?(M) and there exists P
(α,r(ξ))−−−−−→? P ′ then P ′ ∈ ds?(M)

Definition 5 (Parametric Derivation Graph). Given a parametric derivative set ds?(M),
the parametric derivation graph of M, denoted by D?(M) is a labelled directed multi-graph
(V,A) with vertices V ∈ ds?(M) and arcs A ∈ ds?(M)×L× ds?(M) where the number of
occurrences of an arc is equal to the number of distinct inference trees for a transition.

The transitions of D?(M) in Example 1 are:

P BC
{α}

Q
(α,min(pξ1,1,qξ2,1))−−−−−−−−−−−−→? P ′ BC

{α}
Q ′

P ′ BC
{α}

Q ′ (β,p′ξ1,2)−−−−−−→? P BC
{α}

Q ′

P ′ BC
{α}

Q ′ (γ,q′ξ2,2)−−−−−−→? P ′ BC
{α}

Q

P BC
{α}

Q ′ (γ,q′ξ2,2)−−−−−−→? P BC
{α}

Q

The parametric derivation graph leads to a set of generating functions of the CTMC,
i.e., functions of the state descriptor which give the transition rates to all the reachable
states of the system. These functions are parametrised by action types to keep track of
the additional information about which action type is associated with a transition. Let
l ∈ Zd denote a transition jump, recording the changes in the population levels of ξ due to a
transition of the chain. The generating functions are denoted by ϕα(ξ, l) : Rd → R and give
the transition rate for a jump l and an activity of type α. Thus, the entry in the generator
matrix corresponding to the transition from ξ to ξ + l, denoted by qξ,ξ+l, can be written as

qξ,ξ+l =
∑
α∈A

ϕα(ξ, l).

The summation across A captures the fact that distinct action types may contribute to a
transition to the same target state, e.g., (α, p).P + (β, s).P .

A transition jump is calculated using the notion of indicator function, which gives the
coordinate in the NVF of the components in the parametric derivation graph of a model.

Definition 6 (Indicator Function). Let 1i,j ∈ Zd denote a vector whose elements are all
zero except for the coordinate corresponding to the derivative Ci,j, which is set to one. Let
P ∈ ds?(M). The indicator of P, denoted by ind(P), returns a vector whose non-zero
elements correspond to the indices in the population vector of the sequential components in
P. It is defined as follows:

ind(Ci,j) = 1i,j

ind(A def= P) = ind(P)
ind(P BC

L
Q) = ind(P) + ind(Q)

ind(P/L) = ind(P)/L

For instance, the indicator of P BC
{α}

Q is l1,1 = 1, l1,2 = 0, l2,1 = 1, l2,2 = 0. For
a transition in the parametric derivation graph, the jump is calculated as the difference
between the indicator of the lhs and that of the rhs of the transition. For instance, the
first transition has a jump with coordinates l1,1 = −1, l1,2 = 1, l2,1 = −1, l2,2 = 1,
which correctly gives the changes in the population levels due to the execution of the
shared transition α. The complete set of generating functions is computed according to the
following definition.

10 Differential Analysis of PEPA Models

Definition 7 (Extraction of the Generating Functions). Let M be a PEPA model with
parametric derivative graph D?(M). The generating functions of the underlying population-
based CTMC are as follows:

ϕα(ξ, l) =

{
m · r(ξ) if ∃ P

(α,r(ξ))−−−−−→? P ′ ∈ A and l = 0d − ind(P) + ind(P ′)
0 otherwise

where m is the arc multiplicity and 0d is the zero-vector in Zd.

For instance, the generating function implied by P BC
{α}

Q
(α,min(pξ1,1,qξ2,1))−−−−−−−−−−−−→? P ′ BC

{α}
Q ′ is

ϕα(ξ, l) = min (pξ1,1, qξ2,1), where l is the jump vector discussed above.
Finally, a vector field F (x) can be inferred from the generating functions of a PEPA

model as
F (x) =

∑
l∈Zd

l
∑
α

ϕα(x, l) (1)

and the underlying ODE is defined as

d

dt
x(t) = F (x(t)). (2)

In components, the ODE underlying Example 1 is:

ẋ1,1 = −min (p x1,1, q x2,1) + p′ x1,2

ẋ1,2 = min (p x1,1, q x2,1)− p′ x1,2

ẋ2,1 = −min (p x1,1, q x2,1) + q′ x2,2

ẋ2,2 = min (p x1,1, q x2,1)− q′ x2,2

This formulation makes it possible to establish a property of convergence for PEPA models
according to the interpretation by Kurtz [1], [4]. The result used here states that the
solution to a properly defined initial value problem with (2) is the fluid limiting behaviour
of a family of CTMCs in the sense of the following theorem.

Theorem 1 (cfr. [1], Theorem 3.1). Let {Xn(t)} be a family of density dependent CTMCs,
i.e., a sequence of chains with parameter n ∈ N taking values in Zd such that the infinitesimal
generator entries for Xn(t), denoted by qξ,ξ+l, can be described as

qξ,ξ+l = n · ϕ(ξ/n, l). (3)

Suppose that:

1. The functions ϕ(x, l) are continuous.

2. There exists an open set E ⊂ Rd and a constant LE ∈ R such that:

(a) ‖F (x)− F (y)‖ < LE ‖x− y‖ , x, y ∈ E

(b) supx∈E

∑
l∈Zd ‖l‖ϕ(x, l) < ∞

(c) limk→∞ supx∈E

∑
‖l‖>k ‖l‖ϕ(x, l) = 0

Then, for every solution to the initial value problem of (2) subject to

x(0) = x0 and x(t) ∈ E, 0 ≤ t ≤ T

the family {Xn(t)} converges to x(t) in the sense that

lim
n→∞

Xn(0)/n = δ =⇒ ∀ε > 0 lim
n→∞

P
(

sup
t≤T

‖Xn(t)/n− x(t)‖ > ε

)
= 0.

Mirco Tribastone 11

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

Time

D
en

si
ty

ODE
N=10
N=100
N=1000

Figure 1: Density of component P in Example 1. One realisation of the scaled Markov
chain Xn(t)/n over the first three time units becomes closer to the solution of the ODE as
n increases. Parameter set: p = 1.0, p′ = 0.5, q = 2.0, q′ = 4.0, δ = (2, 0, 1, 0).

3 Practical Implications

A family of CTMCs which satisfy limn→∞Xn(0)/n = δ can be taken by letting the initial
population levels be multiples of δ, i.e. Xn(0) = nδ for all n. This corresponds to increas-
ingly large state spaces as a function of n. For instance X1(t) is the CTMC with the system
equation in Example 1, X2(t) corresponds to the initial state P [2NP] BC

{α}
Q [2NQ], and so

on. The result of convergence intuitively states that, asymptotically, a sample path of the
CTMC Xn(t) may be well approximated by n ·x(t), over any finite time interval, where x(t)
is the solution to the initial value problem of the ODE with x(0) = δ. A pictorial represen-
tation of this result is given in Fig. 1, which shows that the ODE is a closer approximation
to sample paths of Xn(t)/n for increasingly large n, with excellent accuracy at n = 1000.

In conclusion, the results presented in this paper give confidence on the soundness of the
differential analysis of a large class of PEPA models (the result of convergence does not hold
for models with passive actions because of the discontinuity of the generating functions for
expressing unbounded capacity). This approach is particularly suitable for large-scale pop-
ulation models, easily susceptible to combinatorial growth of the state space when expressed
with discrete-state techniques, providing accurate solutions with little computational cost.

Acknowledgements The author is supported by the EU-funded project SENSORIA,
IST-2005-016004. Numerous discussions with Jane Hillston and Stephen Gilmore have
helped shape this work.

References

[1] T. G. Kurtz. Solutions of ordinary differential equations as limits of pure Markov processes. J.
Appl. Prob., 7(1):49–58, April 1970.

[2] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press,
1996.

[3] J. Hillston. Fluid flow approximation of PEPA models. In Proceedings of the Second Inter-
national Conference on the Quantitative Evaluation of Systems, pages 33–43, Torino, Italy,
September 2005. IEEE Computer Society Press.

[4] T. G. Kurtz. Limit theorems for sequences of jump Markov processes approximating ordinary
differential processes. J. Appl. Prob., 8(2):344–356, 1971.

12 Differential Analysis of PEPA Models

A functional central limit theorem for PEPA

Richard A. Hayden Jeremy T. Bradley

Dept. of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, UK

{rh,jb}@doc.ic.ac.uk

August 19, 2009

Abstract

We present a functional central limit theorem which quantifies, as a stochastic process, the difference
between a PEPA model’s underlying CTMC and its fluid approximation. We generalise existing theory
to handle the case of non-smooth rate functions, which is an issue particular to modelling problems in
computer science. We verify the weak convergence empirically and suggest future avenues for deducing
more analytic approximations from it.

1 Introduction

Fluid-analysis of performance models offers the exciting potential of analysing massive state spaces at
small computational cost. In the case of stochastic processalgebra models, fluid-analysis involves ap-
proximating the underlying discrete state space with continuous real-valued variables and describing the
time-evolution of those variables with ordinary differential equations (ODEs). This approach was first ap-
plied to a subset of the stochastic process algebra PEPA [1] by Hillston [2], have since been extended and
developed in a number of different directions in the literature [3; 4; 5]. Furthermore, similar ideas have
been applied in other stochastic process algebra [6; 7] and stochastic Petri net [8] formalisms.

Despite the successful and widespread application of thesetechniques, see e.g. [9; 3; 10; 11], many
questions still exist regarding the relationship of the approximation to the original stochastic model —
its underlying continuous time Markov chain (CTMC). In thispaper, we explore one avenue for better
understanding the relationship, a functional central limit theorem, which quantifies second-order deviations
from the first-order fluid approximation. The result is a continuous state space stochastic process, which
lies between the fluid approximation and the underlying CTMCin terms of accuracy and tractability.

In the following section, Section 1.1, we introduce the stochastic process algebra PEPA and in Section 1.2,
we introduce the fluid semantics by means of a simple client/server model for the sake of brevity. In
Section 2, we present the functional central limit theorem and some examples, again in terms of the
client/server model. Then, Section 2.2 discusses the representation of the limit process as the solution
to a stochastic differential equation and the subsequent derivation of its Fokker-Planck partial differential
equation. Finally, we conclude in Section 3.

1.1 PEPA

PEPA [1; 12] as a performance modelling formalism has been used to study a wide variety of systems,
including multimedia applications [13], mobile phone usage [14], GRID scheduling [15], production cell
efficiency [16] and web-server clusters [17] amongst others. It is also adept at capturing large parallel

1

13

software systems, such as peer-to-peer networks [9], to which the style of analysis considered here is
particularly suited.

As in all process algebras, systems are represented in PEPA as the composition ofcomponents which
undertakeactions. In PEPA the actions are assumed to have a duration, or delay.Thus the expression
(α, r).P denotes a component which can undertake anα action at rater to evolve into a componentP .
Hereα ∈ A whereA is the set of action types. The rater is interpreted as a random delay which samples
from an exponential random variable with parameter,r.

PEPA has a small set of combinators, allowing system descriptions to be built up as the concurrent execu-
tion and interaction of simple sequential components. The syntax of the type of PEPA model considered in
this paper may be formally specified using the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ��
L

P | P/L | C

whereS denotes asequential component andP denotes amodel component which executes in parallel.
C stands for a constant which denotes either a sequential component or a model component as introduced
by a definition.CS stands for constants which denote sequential components. The effect of the syntactic
separation between these types of constants is to constrainlegal PEPA components to be cooperations of
sequential processes.

More information and structured operational semantics on PEPA can be found in [1]. A brief discussion of
the basic PEPA operators is given below:

Prefix The basic mechanism for describing the behaviour of a systemwith a PEPA model is to give a
component a designated first action using the prefix combinator, denoted by a full stop, which was
introduced above. As explained,(α, r).P carries out anα action with rater, and it subsequently
behaves asP .

Choice The componentP + Q represents a system which may behave either asP or asQ. The activities
of both P andQ are enabled. The first activity to complete distinguishes one of them: the other
is discarded. The system will behave as the derivative resulting from the evolution of the chosen
component.

Constant It is convenient to be able to assign names to patterns of behaviour associated with components.
Constants are components whose meaning is given by a definingequation. The notation for this
is X

def
= E. The nameX is in scope in the expression on the right hand side meaning that, for

example,X
def
= (α, r).X performsα at rater forever.

Hiding The possibility to abstract away some aspects of a component’s behaviour is provided by the hiding
operator, denotedP/L. Here, the setL identifies those activities which are to be considered internal
or private to the component and which will appear as the unknown typeτ .

Cooperation We writeP ��
L

Q to denote cooperation betweenP andQ overL. The set which is used
as the subscript to the cooperation symbol, thecooperation set L, determines those activities on
which the components are forced to synchronise. For action types not inL, the components proceed
independently and concurrently with their enabled activities. We writeP ‖ Q as an abbreviation
for P ��

L
Q whenL is empty. Furthermore,P [n] is shorthand for the parallel cooperation ofn

P -components,P || · · · || P
︸ ︷︷ ︸

n

.

In process cooperation, if a component enables an activity whose action type is in the cooperation set it will
not be able to proceed with that activity until the other component also enables an activity of that type. The
two components then proceed together to complete theshared activity. Once enabled, the rate of a shared
activity has to be altered to reflect the slower component in acooperation.

14 A functional central limit theorem for PEPA

In some cases, when a shared activity is known to be completely dependent only on one component in the
cooperation, then the other component will be madepassive with respect to that activity. This means that
the rate of the activity is left unspecified (denoted⊤) and is determined upon cooperation, by the rate of
the activity in the other component. All passive actions must be synchronised in the final model.

Within the cooperation framework, PEPA respects the definition of bounded capacity: that is, a component
cannot be made to perform an activity faster by cooperation,so the rate of a shared activity is the minimum
of the apparent rates of the activity in the cooperating components.

1.2 First-order fluid analysis

For the sake of brevity, we will not formally present here thefluid semantics for PEPA. It can be found in
different degrees of generality in the literature (e.g. [2;18; 5]). Instead, we will introduce the techniques
by considering a simple case study.

In the PEPA modelSystem below, we have a population ofNC Clients and a population ofNS Servers.
The system uses a 2-stage fetch mechanism: a client requestsdata from the pool of servers; one of the
servers receives the request, another server may then fetchthe data for the client. At any stage, a server in
the pool may fail.

Client
def
= (request , rreq).Client waiting

Client waiting
def
= (data, rdata).Client think

Client think
def
= (think , rthink).Client

Server
def
= (request , rreq).Server get + (break , rbreak).Server broken

Server get
def
= (data, rdata).Server + (break , rbreak).Server broken

Server broken
def
= (reset , rreset).Server

System
def
= Client [NC] ��

L
Server [NS]

whereL = {request, data}.
Since each client and server can be in one of three derivativestates, it is clear that this model has3NC+NS

states in its underlying CTMC, and thus it is quickly intractable to traditional analysis methods. Consider
the three integer-valued stochastic processes which countthe number of theNC clients in each of the three
possible derivative states ofClient . Let these beNC(t), NCw

(t) andNCt
(t) respectively. Similarly, define

for the servers,NS(t), NSg
(t) andNSb

(t). Usingstrong equivalence it is straightforward to show that the
partition of the state space into mutually exclusive subsets, such that all of these stochastic processes take
on the same value in each subset, is alumpable partition, see [1, Chapter 8]. This allows these states to be
combined and the rates aggregated, resulting in a smaller CTMC, for which each state is specified uniquely
by the values of the six stochastic processes defined above. We call this theunderlying aggregated CTMC.
Unfortunately, this simplification does not, in general, solve the state space explosion problem.1 However,
it is a necessary first step for deriving differential equations to perform the fluid analysis.

The idea of the fluid-analysis is to define deterministic, real-valued fluid approximationsv·(t) (defined by
ODEs) to the integer stochastic processesN·(t). In order to construct the ordinary differential equation
which governs the evolution ofvC(t), for example, we consider the aggregate CTMC rate at whichClient

components are lost in the model and the rate at which they aregained, balancing the two quantities in
terms of the fluid approximationsv·(t):

v̇C(t) = −min(vC(t), vS(t))rreq + vCt
(t)rthink (1.1)

1Indeed, the aggregated state space of this model consists ofpotentially 1

4
(2 + Nc)(1 + Nc)(2 + Ns)(1 + Ns) states. For

Nc = 100 andNs = 50, this is6, 830, 226 states. In general, the size of the aggregated space grows quickly as the number of
possible derivative states increases.

Richard Hayden and Jeremy Bradley 15

That is,Client components are lost only through evolving intoClient waiting components. This happens
by virtue of completing arequest shared action with aServer component, at the aggregate CTMC rate
min(NC(t), NS(t))rreq . Client components are gained only throughClient think components complet-
ing their think action at aggregate CTMC rateNCt

(t)rthink . Similar considerations for the other client
and server components lead to a complete set of six ODEs. These can then be inexpensively integrated to
obtain thev·(t) as deterministic, real-valued functions.

In the case of a general PEPA model, assume that we have a vector-valued stochastic processN(t), defined
onR+ taking values inZN

+ ⊂ R
N
+ , for someN ∈ Z+. Each component of this process counts the number

of a particular derivative state currently active in a parallel group of the model, of which there areN
derivative states in total, across all parallel groups.

Analogously, we define the vector-valued deterministic functionv(t), also defined onR+ and taking values
in R

n
+ to be the first-order fluid approximation of this model. We assume that it is defined uniquely by the

following system of differential equations:

v̇(t) = f(v(t))

and the initial conditionv(0) = N(0). That is, the deterministic functionf : R
N
+ → R

N corresponds
component-wise to the rate at which each derivative state isincremented, minus that at which it is decre-
mented, in a given state of the model. In the case of the above example, we have:

n = 6

N(t) ≡ (NC(t), NCw
(t), NCt

(t), NS(t), NSg
(t), NSb

(t))T

v(t) ≡ (vC(t), vCw
(t), vCt

(t), vS(t), vSg
(t), vSb

(t))T

and:

f(v(t)) ≡











−min(vS(t), vC(t))rreq + vCt
(t)rthink

−min(vCw
(t), vSg

(t))rdata + min(vS(t), vC(t))rreq
−vCt

(t)rthink + min(vCw
(t), vSg

(t))rdata
−min(vS(t), vC(t))rreq − vS(t)rbreak + min(vCw

(t), vSg
(t))rdata + vSb

(t)rreset
−min(vCw

(t), vSg
(t))rdata − vSg

(t)rbreak + min(vS(t), vC(t))rreq
−vSb

(t)rreset + vSg
(t)rbreak + vS(t)rbreak











To see in more detail how an arbitrary PEPA model can be represented in such a manner, the reader is
directed to [18]. Furthermore, it is clear that similar models in other related formalisms might also be cast
into such a representation, thus extending the scope of thispaper beyond just PEPA.

The following theorem, which can be proved using a result of Kurtz [19], is now relatively well known in
the community. It gives a limiting convergence in probability relationship of the first-order fluid analysis
to the underlying CTMC, over bounded intervals of time. Thisconvergence occurs when the component
counts are scaled by the population size and is thus asserting that the relative error of the first-order fluid
analysis decays in the limit of large populations.

In order to state the theorem, consider a sequence of PEPA models which have the same structure of parallel
component groups and differ only in terms of the size of the component populations within these groups.
Furthermore, we require that they all have the same initial proportion of each component type in each case.
Let {Ni(t)}∞i=1 be the associated stochastic counting processes in the notation above, and for eachi, write
Si := N i

1(t)+ · · ·+N i
n(t) for the total component population of modeli.2 So our requirement of constant

initial component type proportions is stated formally as:

N i
k(0)

Si

=
N j

k(0)

Sj

for all i, j > 0 andk ∈ {1, . . . , n}

In the case of PEPA, it is relatively straightforward to see that for anyx ∈ R
N
+ , f(kx) = kf(x) for all

k ∈ R+. Furthermore, since our sequence of PEPA models differ onlyin terms of the initial component

2This does not depend ont because the PEPA operational semantics preserve componentpopulations.

16 A functional central limit theorem for PEPA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10

R
es

ca
le

d
co

m
po

ne
nt

 c
ou

nt
s

Time, t

v(t)
10 Client, 5 Server N(t)/S Client trace

50 Client, 25 Server N(t)/S Client trace
200 Client, 100 Server N(t)/S Client trace
400 Client, 200 Server N(t)/S Client trace

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10

R
es

ca
le

d
co

m
po

ne
nt

 c
ou

nt
s

Time, t

v(t)
10 Client, 5 Server N(t)/S Server trace

50 Client, 25 Server N(t)/S Server trace
200 Client, 100 Server N(t)/S Server trace
400 Client, 200 Server N(t)/S Server trace

Fig. 1. Comparison of ODE approximation with scaled traces of theClient andServer counting processes for the client/server
model. Rates used arerreq = 3.0, rthink = 0.3, rbreak = 0.3, rdata = 1.0 andrreset = 0.2.

counts, it is easy to see that the functionf(·) is the same for anyi. These two facts together mean that
we need only define the fluid approximation toN

i(t), say,vi(t) for a particular value ofi, and the fluid
approximation for any otheri can be defined in terms of it. Indeed, for anyi, j > 0, if v̇

i(t) = f(vi(t))
andv̇

j(t) = f(vj(t)) with initial conditions,vi(0) = N
i(0) andv

j(0) = N
j(0), respectively, we have:

v
i(0) = v

j(0)× Si

Sj

andv
i(t) = v

j(t)× Si

Sj

for all t > 0

Thus we choose only to consider the quantityv(t) := v
i(t)/Si, for all t > 0, which we have just seen is

independent ofi. The theorem can then be stated in terms of these quantities as follows.

Theorem 1.1 If Si →∞ asi →∞, then, for allδ > 0 andT > 0:

P

{

sup
t∈[0, T]

∥
∥N

i(t)/Si − v(t)
∥
∥ > δ

}

−→ 0

asi →∞.

Proof. See Kurtz [19].

Figure 1 shows the effect of this theorem for the client/server example.

2 Second-order approximation (FCLT)

The purpose of this section is to improve upon the fluid approximation of a PEPA model’s underlying
CTMC by constructing a second-order stochastic approximation to the deviation of the CTMC from the
fluid limit. An approach is given in another paper by Kurtz [20], but cannot be applied directly since we
are working with non-smooth rate functions.

However, we will show in this section that we can generalise the theory so that a second-order stochastic
limit does hold, at least as long as the first-order fluid approximation is sufficiently well-behaved. The
proof will draw heavily on results found in [21, Chapters 6, 7& 11].

It is worth mentioning here that the presence of non-smoothness in the rate functions is not unique to PEPA.
Indeed, non-smooth rate functions are also found in continuous stochastic Petri nets [8] and it would appear
that the minimum function in particular is the natural method of modelling synchronisation in the field of

Richard Hayden and Jeremy Bradley 17

computation. It is therefore important that we are able to deal with non-smooth functions when constructing
stochastic approximations.

In the next section, we illustrate an alternative representation of a PEPA model, which will lead more
naturally to the second-order stochastic approximation.

2.1 Random time change representation of PEPA models

The operational semantics of PEPA [1] specify the underlying CTMC (both aggregated and unaggregated)
for a given model. In particular, this is normally achieved through the specification of the instantanenous
transition rates between states. In this section, we illustrate an alternative representation of the aggregated
CTMC in terms of simple stochastic primitives, which leads more readily to the stochastic limit of interest.

We will work in the same framework as before with our sequenceof structurally identical PEPA mod-
els, with underlying aggregated CTMCs,{Ni(t)}∞i=1 and fluid approximation,v(t). However, we must
now consider the transitions in the aggregated state space individually. For example, in the case of the
client/server model, the transitions in the aggregated state space can be enumerated as:

1. request-transitions of oneClient to oneClient waiting and oneServer to oneServer get at rate
min(NC(t), NS(t))rreq ,

2. data-transitions of oneClient waiting to oneClient think and oneServer get to oneServer at
ratemin(NCw

(t), NSg
(t))rdata ,

3. think -transitions of oneClient think to oneClient at rateNCt
(t)rthink ,

4. break -transitions of oneServer to oneServer broken at rateNS(t)rbreak ,

5. break -transitions of oneServer get to oneServer broken at rateNSg
(t)rbreak ,

6. reset-transitions of oneServer broken to oneServer at rateNSb
(t)rreset

In the more general case, we might represent theK transitions in the aggregated state space by a sequence
of jump vectors,{lk ∈ Z

N}K
k=1 specifying that if thekth such transition occurs at timet, N(t) = N(t−)+

l
k, and a sequence of rate functions,{fk : R

N
+ → R+}K

k=1, specifying the aggregate rate of each transition.
For the example above (K = 6) and in that order of enumeration, we would have:

l
1 = (−1, 1, 0, −1, 1, 0) f1(x) = min(x1, x4)rreq

l
2 = (0, −1, 1, 1, −1, 0) f2(x) = min(x2, x5)rdata

l
3 = (1, 0, −1, 0, 0, 0) f3(x) = x3rthink

l
4 = (0, 0, 0, −1, 0, 1) f4(x) = x4rbreak

l
5 = (0, 0, 0, 0, −1, 1) f5(x) = x5rbreak

l
6 = (0, 0, 0, 1, 0, −1) f6(x) = x6rreset

We now consider a probability space equipped withK mutually independent standard (rate 1) Poisson
processes, say{P k(t)}K

k=1, with the intention thatP k(t) corresponds to transitionk. It can then be shown
that we may representN

i(t) on the same probability space as the unique (in terms of sample-paths) solution
to the following equation:

N
i(t) = N

i(0) +
∑

k∈K

P k

(∫ t

0

fk(Ni(s)) ds

)

l
k

It is also true that defining the CTMC,Ni(t) in this manner is equivalent in distribution to the usual
instantaneous transition rate construction, for eachi. This is probably fairly intuitive and we do not go into
details here. This so-called,random time change representation [21, Chapter 6] is very useful for analysis

18 A functional central limit theorem for PEPA

since we are able to consider the entire family of processes,{Ni(t)}∞i=1, on the same probability space in
terms of the same small number of stochastic primitives,{P k(t)}K

k=1. It is a key device used in the proof
of the functional central limit theorem, which follows.

Theorem 2.1 Let T > 0 and letT̂ be the subset of{t ∈ [0, T)} for which f(·) is not totally differentiable
at the pointv(t). We require that̂T has Lebesgue measure zero. Then on all of[0, T) \ T̂, f(·) has a
well-defined Jacobian at the pointv(t), sayD f(v(t)). Extend this to all points{v(t) : t ∈ [0, T)}, say
by defining it to be the matrix of zeros at times inT̂.

Then ifSi →∞ asi →∞, then:
N

i(t)√
Si

−
√

Siv(t) ⇒ E(t)

where:

E(t) :=

∫ t

0

D f(v(s)) · E(s) ds +
∑

k∈K

W k

(∫ t

0

fk(v(s)) ds

)

l
k

{W k(t)}K
k=1 is a sequence ofK mutually independent standard Wiener processes (aka Brownian mo-

tions) and the convergence is weak convergence inD
R

N
+

[0, T), the space ofRN
+ -valued càdlàg3 functions,

equipped with the SkorohodJ1 topology.

Proof. We do not present the proof in detail in this paper, however, avery brief outline is given in Ap-
pendix A.1.

This theorem suggests the following approximation forN
i(t):

N
i(t) ≈ Siv(t) +

√

SiE(t)

Figure 2 shows some comparisons of traces of this second-order approximation with traces of the actual
underlying CTMC for the client/server model. We see the presence of the expected statistical regularity be-
tween the two processes. More useful, however, to validate the results of the above theorem is a comparison
of the root-scaled divergence of the fluid approximation from the CTMC:

N
i(t)− Siv(t)√

Si

with its approximating processE(t). Figure 3 shows trace comparisons of these two stochastic processes
and we can see that as we increase the component populations,the statistical regularity between the two
processes does appear to be increasing.

2.2 SDEs and Fokker-Planck equations

It is possible to show that the stochastic processE(t) defined above is equal in distribution (onD
R

N
+

[0, ∞))

to the unique solution,̄E(t) of the following (It ō) stochastic differential equation (SDE):

dĒ(t) = µ(Ē(t), t) dt + σ(t) dW(t)

whereµ(x, t) : R
N × R+ → R

N andσ(t) : R+ → R
N×K are defined by:

µ(x, t) := D f(v(t)) · x

σ(t) :=
(

lji ×
√

f j(v(t))
)

ij

andW(t) is aK-dimensional standard Wiener process.

3Continue à droite, limitée à gauche, that is, right continuous with left limits.

Richard Hayden and Jeremy Bradley 19

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

C
om

po
ne

nt
 c

ou
nt

s

Time, t

100 Client, 50 Server second-order approximation Client trace
100 Client, 50 Server N(t) Client trace

100 Client, 50 Server second-order approximation Client trace
100 Client, 50 Server N(t) Client trace

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

C
om

po
ne

nt
 c

ou
nt

s

Time, t

100 Client, 50 Server second-order approximation Server trace
100 Client, 50 Server N(t) Server trace

100 Client, 50 Server second-order approximation Server trace
100 Client, 50 Server N(t) Server trace

Fig. 2. Comparison of second-order approximation traces with traces of theClient and Server counting processes for the
client/server model. Rates used arerreq = 3.0, rthink = 0.3, rbreak = 0.3, rdata = 1.0 andrreset = 0.2.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 2 4 6 8 10

R
oo

t-
sc

al
ed

 c
om

po
ne

nt
 c

ou
nt

s

Time, t

50 Client, 25 Server root-scaled trace of divergence of CTMC from ODE (Clients)
50 Client, 25 Server E(t) trace (Clients)

50 Client, 25 Server root-scaled trace of divergence of CTMC from ODE (Clients)
50 Client, 25 Server E(t) trace (Clients)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 2 4 6 8 10

R
oo

t-
sc

al
ed

 c
om

po
ne

nt
 c

ou
nt

s

Time, t

100 Client, 50 Server root-scaled trace of divergence of CTMC from ODE (Clients)
100 Client, 50 Server E(t) trace (Clients)

100 Client, 50 Server root-scaled trace of divergence of CTMC from ODE (Clients)
100 Client, 50 Server E(t) trace (Clients)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 2 4 6 8 10

R
oo

t-
sc

al
ed

 c
om

po
ne

nt
 c

ou
nt

s

Time, t

500 Client, 250 Server root-scaled trace of divergence of CTMC from ODE (Clients)
500 Client, 250 Server E(t) trace (Clients)

500 Client, 250 Server root-scaled trace of divergence of CTMC from ODE (Clients)
500 Client, 250 Server E(t) trace (Clients)

Fig. 3. Comparison ofE(t) traces forClient components with traces of the corresponding root-scaled divergence of the CTMC from
the ODE approximation for the client/server model. We show three figures, increasing the total component population each time.
Rates used arerreq = 3.0, rthink = 0.3, rbreak = 0.3, rdata = 1.0 andrreset = 0.2.

Furthermore, from this, we may derive the Fokker-Planck partial differential equation (PDE) (see e.g. [22]),
which governs the evolution of the time-dependent probability density,p(x, t) : R

N × R+ → R+ of Ē(t)
(and thus also ofE(t)). To state this equation, define firstg1

i (x, t) : R
N × R+ → R andg2

ij(t) : R+ → R

20 A functional central limit theorem for PEPA

by:

g1
i (x, t) := µi(x, t)

g2
ij(t) :=

1

2

K∑

k=1

σik(t)σjk(t)

then the Fokker-Planck PDE is:

∂p

∂t
= −

N∑

i=1

∂

∂xi

[
g1

i (x, t)p(x, t)
]
+

N∑

i=1

N∑

j=1

g2
ij(t)

∂2

∂xi∂xj

[p(x, t)]

Solving this analytically is possible only in a few special cases, however, numerical integration may be
possible whereN is not too large. This would provide a route to direct approximation of probability
distributions of interest in the original CTMC. Furthermore, since in our case,σ and thusg2

ij have no
dependence on the state vector, we are actually dealing witha special subset of the general class of Fokker-
Planck equations, which may yield more easily to numerical solution, or otherwise. It is also highly
probable that simpler systems of equations can be extractedfrom this PDE for specific quantities of interest,
such as first passage-times and steady-state distributions, all of which will be investigated in later papers.

3 Conclusion and future work

We have presented a functional central limit theorem which quantifies, as a stochastic process, the dif-
ference between a PEPA model’s underlying CTMC and its fluid approximation. Our work is based on
a generalisation of the theory found in [21] to handle the case of non-smooth rate functions. We have
demonstrated the convergence empirically using stochastic simulation and outlined avenues for exploiting
it more analytically in future work.

References

[1] J. Hillston,A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.

[2] J. Hillston, “Fluid flow approximation of PEPA models,” in Proceedings of the Second International
Conference on the Quantitative Evaluation of Systems, (Torino, Italy), pp. 33–43, IEEE Computer
Society Press, Sept. 2005.

[3] J. T. Bradley, S. T. Gilmore, and J. Hillston, “Analysingdistributed internet worm attacks using con-
tinuous state-space approximation of process algebra models,” Journal of Computer and System Sci-
ences, vol. 74, pp. 1013–1032, September 2008.

[4] N. Geisweiller, J. Hillston, and M. Stenico, “Relating continuous and discrete PEPA models of sig-
nalling pathways,”Theoretical Computer Science, vol. 404, pp. 97–111, November 2008.

[5] R. Hayden and J. Bradley, “Evaluating fluid semantics forpassive stochastic process algebra cooper-
ation,” Performance Evaluation, 2009. Accepted for publication.

[6] L. Bortolussi and A. Policriti, “Stochastic concurrentconstraint programming and differential equa-
tions,” in QAPL’07, 5th Workshop on Quantitative Aspects of Programming Languages, vol. 190 of
Electronic Notes in Theoretical Computer Science, pp. 27–42, September 2007.

[7] L. Cardelli, “From processes to ODEs by Chemistry,” inTCS 2008, Fifth IFIP International Confer-
ence on Theoretical Computer Science, (Milan), Springer, 2008.

Richard Hayden and Jeremy Bradley 21

[8] J. Júlvez, E. Jiménez, L. Recalde, and M. Silva, “On observability in timed continuous petri net
systems,” inQEST’04, 1st International Conference on Quantitative Evaluation of Systems, vol. 266,
pp. 60–69, IEEE, September 2004.

[9] A. Duguid, “Coping with the parallelism of BitTorrent: Conversion of PEPA to ODEs in dealing
with state space explosion,” inFormal Modeling and Analysis of Timed Systems, 4th International
Conference, FORMATS 2006, Paris, France, September 25-27, 2006, Proceedings (E. Asarin and
P. Bouyer, eds.), vol. 4202 ofLecture Notes in Computer Science, pp. 156–170, Springer, 2006.

[10] S. Gilmore and M. Tribastone, “Evaluating the scalability of a web service-based distributed e-
learning and course management system,” inThird International Workshop on Web Services and
Formal Methods (WS-FM’06) (M. Bravetti, M. T. Núñez, and G. Zavattaro, eds.), vol. 4184 of Lec-
ture Notes in Computer Science, (Vienna, Austria), pp. 156–170, Springer, 2006.

[11] M. Bravetti, S. Gilmore, C. Guidi, and M. Tribastone, “Replicating web services for scalability,”
in Proceedings of the Third International Conference on Trustworthy Global Computing (TGC’07)
(G. Barthe and C. Fournet, eds.), vol. 4912 ofLNCS, pp. 222204–221, Springer-Verlag, 2008.

[12] J. Hillston, “Process algebras for quantitative analysis,” in Proceedings of the 20th Annual IEEE
Symposium on Logic in Computer Science (LICS’ 05), (Chicago), pp. 239–248, IEEE Computer
Society Press, June 2005.

[13] H. Bowman, J. Bryans, and J. Derrick, “Analysis of a multimedia stream using stochastic process al-
gebra,” inSixth International Workshop on Process Algebras and Performance Modelling (C. Priami,
ed.), (Nice), pp. 51–69, September 1998.

[14] J. Forneau, L. Kloul, and F. Valois, “Performance modelling of hierarchical cellular networks using
PEPA,”Performance Evaluation, vol. 50, pp. 83–99, Nov. 2002.

[15] N. Thomas, J. T. Bradley, and W. J. Knottenbelt, “Stochastic analysis of scheduling strategies in a
GRID-based resource model,”IEE Software Engineering, vol. 151, pp. 232–239, September 2004.

[16] D. R. W. Holton, “A PEPA specification of an industrial production cell,” inProcess Algebra and
Performance Modelling Workshop (S. Gilmore and J. Hillston, eds.), vol. 38(7) ofSpecial Issue: The
Computer Journal, pp. 542–551, CEPIS, Edinburgh, June 1995.

[17] J. Bradley, N. Dingle, S. Gilmore, and W. Knottenbelt, “Derivation of passage-time densities in PEPA
models using IPC: The Imperial PEPA Compiler,” inProceedings of the 11th IEEE/ACM Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Sys-
tems (G. Kotsis, ed.), (University of Central Florida), pp. 344–351, IEEE Computer Society Press,
Oct. 2003.

[18] R. A. Hayden and J. T. Bradley, “Fluid semantics for passive stochastic process algebra cooperation,”
in VALUETOOLS’08, Third International Conference on Performance Evaluation Methodologies and
Tools, (Athens), 2008.

[19] T. Kurtz, “Solutions of ordinary differential equations as limits of pure jump Markov processes,”
Applied Probability, vol. 7, pp. 49–58, April 1970.

[20] T. Kurtz, “Strong approximation theorems for density dependent Markov chains,”Stochastic Pro-
cesses and Applications, vol. 6, pp. 223–240, 1978.

[21] T. Kurtz and S. Ethier,Markov Processes Characterisation and Convergence. Wiley, 1986.

[22] C. Gardiner,Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences.
Springer, 1983.

22 A functional central limit theorem for PEPA

A Proofs

A.1 Proof of Theorem 2.1

We work with the random time change representation ofN
i(t):

N
i(t) = N

i(0) +
∑

k∈K

P k

(∫ t

0

fk(Ni(s)) ds

)

l
k

By Corollary 5.5 and Remark 5.4 of [21, Chapter 7], we may state the following lemma:

Lemma A.1 A standard (rate one) Poisson process,P (t), can be constructed on the same probability space
as a standard Wiener process,W (t), such that the random variable:

Z := sup
t∈R+

|P (t)− t−W (t)|
log(2 ∨ t)

< ∞ almost surely

Using this lemma, we may construct our CTMC processes,{Ni(t)}∞i=1 on a probability space equipped
with the requiredK mutually independent standard Poisson processes,{P k(t)}K

k=1, but also withK mu-
tually independent standard Wiener processes,{W k(t)}K

k=1, such that, we may also define the random
variables,{Zk}K

k=1:

Zk := sup
t∈R+

|P k(t)− t−W k(t)|
log(2 ∨ t)

< ∞ almost surely

Moreover, define for each1 ≤ i < ∞, W k, i(t) := 1√
Si

W k(Sit), and note that eachW k, i(t) is also a
standard Wiener process by self-similarity. Then we may write:

Zk = sup
t∈R+

|P k(t)− t−
√

SiW
k, i(t/Si)|

log(2 ∨ t)

for all 1 ≤ i < ∞. This allows us to derive the following strong approximation result:

N
i(t) = N

i(0) +

∫ t

0

f

(
1

Si

N
i(s)

)

ds +
∑

k∈K

√

SiW
k, i

(
1

Si

∫ t

0

fk

(
1

Si

N
i(s)

)

ds

)

l
k + O(log(Si))

almost surely. A direct comparison ofN
i(t)−Siv(t)√

Si
with E(t) as defined in the statement of the theorem,

using this strong approximation then yields the result. We omit further details here.

Richard Hayden and Jeremy Bradley 23

Qualitative Reasoning of Stochastic Models and

the Role of Flux

Paolo Ballarini∗, Maria Luisa Guerriero†, and Jane Hillston‡

Abstract

Qualitative reasoning (QR) is a technique integrating the fields of AI and systems theory,
whose aim is to be able to reason about the behaviour of systems with uncertainty in
parameter values and in the exact quantitative dynamics. Traditionally applied to the
study of the dynamics of physical systems, QR has been usually considered in a deterministic
setting. Here we investigate the application of a QR approach to the analysis of continuous
time Markov chains (CTMCs), and we focus on the application of probabilistic fluxes analysis
as a first experiment in this context.

1 Introduction

Qualitative reasoning (QR) is an approach to analysing dynamic systems at a level of abstraction
which disregards precise quantitative parameters but nevertheless is able to derive information
about the possible behaviours which might be exhibited by the system [6, 7]. It has been pri-
marily studied in AI and can be regarded as a form of knowledge representation. It is sometimes
likened to common-sense reasoning, the analogy being that we can all predict the behaviour of
many physical dynamic systems, such as the swinging of a pendulum, without having to analyse
the differential equation which precisely governs that behaviour. Motivations for QR include
uncertainty about parameter values, uncertainty about the initial conditions of the system, or
even explicit uncertainties in the model, for example with stochastic differential equations [4].
Applications of QR include diagnostics, fault prediction, planning, argumentation and explana-
tion.

Recently QR has been proposed in the context of systems biology [1, 5]. In biochemical
systems biologists often characterise behaviour based on the qualitative trends of proteins con-
centrations rather than quantitative amounts. There are several reasons for this:

• parameter values for models of biochemical systems are rarely known in detail;

• the models themselves may be based on partial knowledge and speculation;

• difficulties in exactly repeating the same experiment, and the indirect forms of measurement
used, make it difficult to characterise a behaviour quantitatively.

Given its origins in modelling physical systems QR is usually applied to systems of differential
equations which have deterministic behaviour. The motivation for this paper is to consider
whether there is scope to develop an approach to QR for stochastic models of dynamic behaviour.
∗CoSBi, Trento, Italy. Email: ballarini@cosbi.eu
†University of Edinburgh, Scotland, UK. Email: mguerrie@inf.ed.ac.uk
‡University of Edinburgh, Scotland, UK. Email: jane.hillston@ed.ac.uk

1

25

ODEs
�

�
��	

@
@
@@R

landmark values
and intervals

@
@
@
@R

qualitative constraints

�
�

�
�	

qualitative model
e.g. QDEs or phase diagrams

�
�
��	

@
@
@@R

qualitative simulation
possible sequences of qualitative states

that a system moves through

envisionment
all possible qualitative states and the

nondeterministic transitions between them

Figure 1: Schematic view of QR reasoning.

This is preliminary work and the current paper is intended to explore the issues which may be
involved rather than present any definitive answers.

2 Qualitative Reasoning

A number of different styles of qualitative modelling have appeared in the literature but they
all start from a continuous, generally deterministic, representation of the dynamics of a system,
usually as a set of ordinary differential equations (ODEs). Abstraction is applied to the system
so that rather than look at the continuum of possible values for variables within the equations,
instead a discrete set of intervals is identified. The boundaries between intervals are important
and termed landmark values for the variables. In the simplest case the landmark values might
be just −>, 0,>, creating the intervals (−>, 0) and (0,>) i.e. we only distinguish whether a
value is negative or positive. If the differential equation governing the behaviour of the variable
includes higher derivatives (i.e. the differential equation is higher than first order) each derivative
is treated as a distinct variable. Thus if we consider a ball thrown vertically into the air, its
height at time t is given by

x(t) = −1
2
gt2 + v0t+ x0

and the variables correspond to the height and the velocity. The height may be positive or 0,
whereas the velocity may be positive, negative or zero.

Which ever style of qualitative modelling is used, the steps of QR are broadly the same
and as illustrated in Figure 1. The potential qualitative states can be found by considering the
product space derived from the qualitative states of each variable. However, in general it will
not be possible to reach all these states as the dynamics of the system places constraints on its
behaviour. For example, once the velocity of the ball has reached zero it is no longer possible
for the height of the ball to increase. Applying the qualitative constraints to the product state
space reduces it to the qualitative model which may be represented as a phase diagram or a set
of qualitative differential equations for example. In essence this captures which combinations
of intervals and values for variables are valid. This representation may then be subjected to
simulation to derive valid trajectories, or envisionment. An envisionment is the state transition
diagram for the qualitative state space. It may be either a total envisionment, considering all
valid states, or an attainable envisionment, showing only those states reachable from known

2

26 Qualitative Reasoning of Stochastic Models and the Role of Flux

initial conditions.
In some systems we may gain more understanding of the behaviour of the system if as well as

the qualitative value of state variables we also have qualitative information about its derivative.
For example, if we consider a swinging pendulum, knowing that the velocity is positive does not
characterise the different behaviours in different parts of the trajectory. However if we also know
how the rate of change of velocity is varying we gain a more complete view of the behaviour. Thus
some QR systems incorporate not just variable intervals and landmarks into their representation
of qualitative states, but also derivative intervals and landmarks [2].

There has been some work interpreting the envisionment as the state transition diagram for
a Markov process and then subjecting it to usual Markov analysis [4]. In this case probabilities
must be attributed to each of the transitions within the state space. In [4] this is done using
a relative frequency argument. Doyle and Sacks work with a phase transition QR model and
choose the probabilities according to the proportion of points within the volume of phase space
corresponding to the abstract state which will follow a trajectory leading to another abstract
state within one time unit. Once the Markov chain is generated they propose analysing it to
identify transient and ergodic states, as well as usual Markovian analysis to find steady state and
time to absorption in the case of an absorbing Markov chain. Note that this is quite different
from what we are interested in. Here the stochasticity is added only after the derivation of the
qualitative state space as a means to assess which (deterministic) behaviour is more likely. We
are interested in replacing the dynamic model on which the QR is based by a continuous time
Markov chain (CTMC).

3 Flux-based Analysis: a First Experiment on Stochastic
Qualitative Reasoning

We will consider CTMC models which might arise from consideration of systems composed of
interacting components, for example PEPA models. Thus the dimensions of our CTMC will
correspond to the possible local states of the components, and our state representation will be
the count of the number of components exhibiting each local state. These will be variables which
QR would seek to abstract. Therefore note that the high/low style of PEPA modelling, and Bio-
PEPA with levels, could already be viewed as qualitative representations of the system, with the
PEPA/Bio-PEPA semantics providing the qualitative constraints, and the derived state space
being an attainable envisionment.

However this is not the focus of our current experiment. Here we aim to investigate al-
ternative, possibly more abstract, ways of viewing the dynamics of a CTMC. In general, the
quantitative dynamics of CTMC are studied in two ways.

• By simulation, in which one possible trajectory through the state space is generated at a
time, exhibiting one possible result of the stochastic choices within the system. Multiple
trajectories must be generated before any conclusions can be drawn about the behaviour of
the system. However the behaviour which is observed is definitive in the sense that there
is a clear progression from state to state.

• By numerical solution of the state probability distribution, considering all possible be-
haviours at the same time. Here what is observed is not a progression from state to state
but a shifting of probability mass within the probability distribution as some states become
more likely than others over time.

It is not straightforward to map either of these directly to the ODE characterisation of system
dynamics on which QR is usually based. Like simulation the ODE could be regarded as a linear

3

Paolo Ballarini, Maria Luisa Guerriero and Jane Hillston 27

time view, as a single trajectory is observed. However, in many ways this trajectory is related
to the expected value of state variables which might be observed in numerical solution of the
CTMC as the ODE dynamics allows all possible actions to occur at once. In other words the
ODE trajectory corresponds to the expected value of the state variables in the CTMC. Thus we
have chosen this latter view of the CTMC and wish to consider how analysis of the probability
distribution and the forces governing its evolution may be used for QR.

CTMC models are characterised by a steady-state and a transient window. Starting at time
t = 0 the model eventually reaches its steady-state within a given time tss > 0. The time interval
[0, tss] is the transient window of the CTMC model. However note that this notion of steady-state
is quite different to that considered in the QR literature, where due to the deterministic nature
of the dynamic model the steady-state is a single, absorbing state.

In the rest of this section we focus on probabilistic fluxes into/out of a given state of a (finite
state) CTMC model, and we investigate their use for the analysis of the (qualitative) dynamic
behaviour of the CMTC. First we give a few relevant definitions, and then we show the result
of flux-based analysis on a few simple systems.

An (n≥1)-dimensional CTMC M is characterised by a set of n non-negative integer valued
variables (X1, X2, · · · , Xn), and a state sj = (x1

j , x
2
j , · · · , xnj) ∈ S is an n-tuple representing the

values of each variable Xi in state sj .
A transition q : sj → sk (with sj = (x1

j , x
2
j , · · · , xnj) and sk = (x1

k, x
2
k, · · · , xnk)) such that

Q(sj , sk) > 0 is called an Xi-increasing transition if and only if (xij <x
i
k). Similarly, q is called

Xi-decreasing iff (xij>x
i
k), and Xi-invariant iff (xij=xik).

Given an n-dimensional CTMC M = (S,Q, s0), a state sj = (x1
j , x

2
j , · · · , xnj) ∈ S, and a

variable Xi (with 1 ≤ i ≤ n), we define E+i(sj), E−i(sj), E=i(sj) ≤ E(sj) as the outgoing
rates from state sj corresponding to, respectively, Xi-increasing, Xi-decreasing and Xi-invariant
transitions (and we call them Xi-increasing, Xi-decreasing, and Xi-invariant outgoing rates).
Formally, they are defined in Eq. (1), Eq. (2) and Eq. (3), respectively.

E+i(sj) =


∑

1≤k≤m,k 6=j Q(sj , sk) if xij < xik

0 otherwise
(1)

E−i(sj) =


∑

1≤k≤m,k 6=j Q(sj , sk) if xij > xik

0 otherwise
(2)

E=i(sj) =


∑

1≤k≤m,k 6=j Q(sj , sk) if xij = xik

0 otherwise
(3)

These tell us the rates of change to particular variables in particular states but since we view
the system through its probability distribution we need to instead consider the expected values
for these rates of change, i.e. the probabilistic flux. Given a state s ∈ S, and a time instant
t ∈ R+, we define the instantaneous state out-flux as follows.

Definition 1 (Instantaneous state out-flux) The instantaneous state out-flux for s at time
t is defined as:

flux(s, t) = π(s, t) · E(s) = π(s, t) · −Q(s, s) .

The out-flux for state s at time t is computed as the product of the transient probability of
being in state s at time t (i.e. π(s, t)) multiplied by the emanating rate from s (i.e. the sum of
rates of all its outgoing transitions).

4

28 Qualitative Reasoning of Stochastic Models and the Role of Flux

We can now define the ith-dimensional instantaneous state out-flux and the ith-dimensional
instantaneous total out-flux.

Definition 2 (Instantaneous ith-dimensional state out-flux) The instantaneous ith-dimen-
sional increasing/descreasing/invariant state out-fluxes for s at time t (with 1 ≤ i ≤ n) are
defined as:

flux+i(s, t) = π(s, t) · E+i(s)
flux−i(s, t) = π(s, t) · E−i(s)
flux=i(s, t) = π(s, t) · E=i(s)

where E+i(s), E−i(s), E=i(s) ≤ E(s) are the Xi-increasing, Xi-decreasing, and Xi-invariant
outgoing rates from s.

The ith-dimensional increasing/decreasing/invariant state out-flux are, hence, the portions of
flux(s, t) corresponding to, respectively, Xi-increasing, Xi-decreasing and Xi-invariant transi-
tions.

The Xi-instantaneous gradient state out-flux, denoted as fluxδi(s, t) is defined as the differ-
ence between the increasing and the decreasing fluxes:

fluxδi(s, t) = flux+i(s, t)− flux−i(s, t) .

Definition 3 (Instantaneous ith-dimensional total out-flux) The instantaneous ith-dimen-
sional increasing/descreasing/invariant/gradient total out-fluxes at time t (with 1 ≤ i ≤ n) are
defined as:

flux+i(t) =
∑
s∈S

flux+i(s, t)

flux−i(t) =
∑
s∈S

flux−i(s, t)

flux=i(t) =
∑
s∈S

flux=i(s, t)

fluxδi(t) =
∑
s∈S

fluxδi(s, t)

The total ith-dimensional out-fluxes (increasing/decreasing/invariant/gradient) for the CTMC
M at time t are the sum, over all states of M , of the ith-dimensional increasing/decreasing and
invariant/gradient fluxes at time t (again, for the sake of readability, M is omitted from the
notation of total fluxes).

Definition 4 (ith-dimensional flux analysis of CTMC) Let T = [t1, t2] be a time interval
(with t1 < t2 ∈ R+), F ∈ N∗ be the sampling frequency of T , and ∆ = ‖ (t2−t1)

F ‖ be the
sampling period denoting the amplitude of each sub-interval of T . The ith-dimensional flux
analysis for a given CTMC M over the time interval T is achieved through calculation of the
increasing/decreasing/invariant/gradient fluxes for M over the time interval T and with respect
to the sampling period ∆.

In the next section we show some results of the flux-analysis for a few simple models.

5

Paolo Ballarini, Maria Luisa Guerriero and Jane Hillston 29

3.1 Flux analysis of CTMC: Some Examples

We consider few examples of multi-dimensional CTMCs modelling elementary biochemical sys-
tems. The number of dimensions of each such a CTMC corresponds to the number of biochemical
species in the considered system. In each one of the following examples we calculate the positive,
the negative, the invariant as well as the gradient flux of each dimension (i.e. species). We discuss
the obtained results by comparing the flux behaviour with classical transient analysis.

3.1.1 A→ B → C

We consider the 3-dimensional CTMC model corresponding to the biochemical system described
by reactions:

A→ B

B → C
(4)

Equations (4) are an example of simple closed system (i.e. the total population is invariant)
representing the transformation of molecules of a source species A into molecules of a target
species C via an intermediate species B. For simplicity we assume the two reactions to be bal-
anced (i.e. having the same rate) and we consider an initial configuration with only 10 molecules
of A (i.e. we assume (10, 0, 0) to be the initial state). We observe that the corresponding CMTC
has (n+ 1)(n+ 2)/2 states (where n = a0 is the initial amount of A) with exactly one deadlock
state (i.e. (0, 0, n)). The dynamics of such a system is intuitively pretty simple: starting at time
t = 0 species A will monotonically decrease to 0, while its dual, species C, will monotonically
increase to n = 10. On the other hand the intermediate species B will have a peak correspond-
ing to the progressive transformation of A into C. The transient behaviour of species A, B
and C is depicted in Figure 2, where each line represents the instant reward of a version of the
CTMC model with state rewards (i.e. rewards corresponding to the level of each species have
been assigned to each state of the chain): this corresponds to the expected value of the species at
that time. Figure 2 reflects the intuition with A and C monotonically increasing and decreasing,
respectively, throughout the transient window, and with B peaking after about 1 time unit.

Figure 2: Instant reward (transient analysis) of the A→ B → C model.

The interpretation of fluxes is also in compliance with the intuitive description of the system
behaviour, however it requires a little bit more thinking. With respect to the positive fluxes (Fig-
ure 3(a)) we observe that A-positive flux (blue line) is constantly null, as A cannot increase at
all in this system. On the other hand, B-positive flux (green line), starting from its maximum
level (corresponding to the maximal rate of conversion of A into B), steadily decreases up until

6

30 Qualitative Reasoning of Stochastic Models and the Role of Flux

all A molecules have turned into B molecules. Finally the C-positive flux for (red line) shows a
peak representing the maximal speed at which C is produced and which happens slightly after
B has reached its peak (i.e. at t = 1, compare the green line of Figure 2 with the red line of
Figure 3(a)), which is: when half of the A molecules has turned into B molecules. The inter-
pretation of the negative fluxes (Figure 3(b)) and invariant fluxes (Figure 3(c)) can be devised
similarly. Finally we spend a few words commenting on the gradient fluxes (Figure 3(d)) be-
cause they provide the most significant source of qualitative information about the dynamics
of a CTMC model. Figure 3(d) illustrates the qualitative behaviour of the system within the
transient window. Specifically we observe that A-gradient flux (blue line) is always negative,
signifying that the overall amount of A will constantly decrease. On the other hand, C-gradient
flux (red line) is always positive, meaning that the overall amount of C will only increase in the
system, although the presence of a peak tells us that the speed of such growth will progressively
slow down after an initial acceleration. Finally, B-gradient flux (green line) spans from (strongly)
positive to (weakly) negative, meaning that after an initial fast growth, the increase in B will
slow down and eventually turn into a decrease.

0 2 4 6 8 10
0

2

4

6

8

10

Time

U
P

 fl
ux

A −> B −> C −− A=10, B=0, C=0 −− UP flux

A
B
C

(a) flux+A, f lux+B , f lux+C

0 2 4 6 8 10
0

2

4

6

8

10

Time

D
O

W
N

 fl
ux

A −> B −> C −− A=10, B=0, C=0 −− DOWN flux

A
B
C

(b) flux−A, f lux−B , f lux−C

0 2 4 6 8 10
0

2

4

6

8

10

Time

C
O

N
S

T
 fl

ux

A −> B −> C −− A=10, B=0, C=0 −− CONST flux

A
B
C

(c) flux=A, f lux=B , f lux=C

0 2 4 6 8 10
−10

−5

0

5

10

Time

D
IF

F
 u

p−
do

w
n

flu
x

A −> B −> C −− A=10, B=0, C=0 −− DIFF up−down flux

A
B
C

(d) fluxδA, f luxδB , f luxδC

Figure 3: Fluxes calculation for the A→ B → C model.

3.1.2 A 3-way oscillator.

As a further example of CTMC flux analysis we consider a slightly more complicated system,
known as the 3-way oscillator [3]. The model is (as in the previous case) a 3-dimensional CTMC

7

Paolo Ballarini, Maria Luisa Guerriero and Jane Hillston 31

model corresponding to the biochemical system described by the following 3 + 3 reactions1:

basic reactions doping reactions

A+B → B +B DA +B → A+DA

B + C → C + C DB + C → B +DB

C +A→ A+A DC +A→ C +DC

Species DA, DB and DC represent doping substances for the main species, respectively A, B
and C. Stochastic simulations show a permanent oscillation for the above system: the levels of
molecules for the three species A, B and C fluctuate permanently and in a co-ordinated fashion.
The presence of the doping reactions guarantees that the oscillation does never stop. In this case
the resulting CTMC model is finite-state and ergodic (no deadlock states). We also consider
the no-doping variant of such model, whereby doping reactions (and species) are removed. In
this case the system still oscillates; however, the oscillation damps down in finite time (i.e. the
underlying CTMC has 3 deadlock states corresponding to all molecules accumulating in either
A, B or C).

! !"# $ $"# %
!

%!!

&!!

'!!

(!!

$!!!

)*+,

-
.
/0
12
3

456*117849/:4;*<=/!!/>?#!@/A?#@/B?#/!!/-./0123

/

/

>
A
B

(a) flux+A, f lux+B , f lux+C

0 0.5 1 1.5 20

200

400

600

800

1000

Time

DO
W

N
flu

x

oscillator doping !! A=50, B=5, C=5 !! DOWN flux

A
B
C

(b) flux−A, f lux−B , f lux−C

0 0.5 1 1.5 20

200

400

600

800

1000

Time

CO
NS

T
flu

x

oscillator doping !! A=50, B=5, C=5 !! CONST flux

A
B
C

(c) flux=A, f lux=B , f lux=C

0 0.5 1 1.5 2
!1000

!500

0

500

1000

Time

D
IF

F
up
!d

ow
n

flu
x

oscillator doping !! A=50, B=5, C=5 !! DIFF up!down flu

A
B
C

(d) fluxδA, f luxδB , f luxδC

Figure 4: Fluxes calculation for the 3-way oscillator model with doping.

1Note that even though there are actually 6 species in this systems, the underlying CTMC is still 3-dimensional,
as three of the species, namely DA, DB and DC , are just modifiers (i.e. neither reactants nor products), and thus
their amounts do not need to be captured in the state.

8

32 Qualitative Reasoning of Stochastic Models and the Role of Flux

Results of flux calculations for a version of the model with initial state (50, 5, 5) are showed in
Figure 4 for the oscillator with doping (i.e. sustained oscillation) and in Figure 5 for the oscillator
without doping reactions (i.e. damped oscillation).

0 0.5 1 1.5 2
0

200

400

600

800

Time

U
P

flu
x

oscillator no doping !! A=50, B=5, C=5 !! UP flux

A
B
C

(a) flux+A, f lux+B , f lux+C

0 0.5 1 1.5 20

200

400

600

800

Time

DO
W

N
flu

x

oscillator no doping !! A=50, B=5, C=5 !! DOWN flux

A
B
C

(b) flux−A, f lux−B , f lux−C

0 0.5 1 1.5 20

200

400

600

800

Time

CO
NS

T
flu

x

oscillator no doping !! A=50, B=5, C=5 !! CONST flux

A
B
C

(c) flux=A, f lux=B , f lux=C

0 0.5 1 1.5 2
!1000

!500

0

500

1000

Time

D
IF

F
up
!d

ow
n

flu
x

oscillator no doping !! A=50, B=5, C=5 !! DIFF up!down f

A
B
C

(d) fluxδA, f luxδB , f luxδC

Figure 5: Fluxes calculation for the 3-way oscillator model without doping.

In both cases the oscillatory behaviour of the system is reflected by the fluxes, although the
sustainability of the doped oscillator clearly cannot be observed through fluxes because of their
transient nature: the oscillatory trend of the fluxes fades away as the steady state is approached.

The main difference between the doped and non-doped oscillators is reflected by the fact
that at steady-state fluxes stabilise at a positive value for the sustained oscillator, and at zero
for the damped oscillator. Furthermore, if we compare, for example, the positive fluxes of the
sustained (Figure 4(a)) and damped (Figure 5(a)) oscillators, we observe that C-positive flux
grows much faster in the doped oscillator than in the non-doped one. This is due to the presence of
the doping reactions (and, specifically, of reaction DC+A→ C+DC) which boost the production
of C molecules proportionally to the amount of A (which in the initial state (50, 5, 5) is indeed
large); in the non-doped case, instead, the growth of C is due, exclusively, to transformation of
B into C (i.e. reaction B + C → C + C) which, due to the low (initial) level of B, makes the
growth of C much slower.

9

Paolo Ballarini, Maria Luisa Guerriero and Jane Hillston 33

4 Conclusion

In this paper we have explored the information which can be gained from considering the prob-
abilistic flux acting on state variables in a CTMC. We have demonstrated that this provides
an interesting alternative view of the dynamics of the system. However this cannot currently
be regarded as qualitative reasoning as both states and rates are represented in full and not
abstracted. Moreover, the approach we take, by sampling the probabilistic flux using transient
analysis of the CTMC, is computationally intensive and would not be feasible for large systems.
Nevertheless this appears to be a rich topic for further exploration.

References

[1] G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page, and D. Schneider.
Analysis and verification of qualitative models of genetic regulatory networks: A model-
checking approach. In L.P. Kaelbling and A. Saffiotti, editors, Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI’05), pages 370–375, 2005.

[2] A.M. Bruce and G.M. Coghill. The JMORVEN fuzzy qualitative reasoning software package.
http://www.abdn.ac.uk/~csc282/JMorven/, 2009.

[3] Luca Cardelli. Artificial biochemistry. Technical report, The Microsoft Research - CoSBi,
2006.

[4] J. Doyle and E.P. Sacks. Markov Analysis of Qualitative Dynamics. Computational Intelli-
gence, 7(1):1–10, 1991.

[5] Ross D. King, Simon M. Garrett, and George M. Coghill. On the use of qualitative reasoning
to simulate and identify metabolic pathways. Bioinformatics, 21(9):2017–2026, 2005.

[6] B. Kuipers. Qualitative Reasoning: Modeling and simulation with incomplete knowledge. MIT
Press, 1994.

[7] H. Werthner. Qualitative Reasoning: Modeling and the generation of behavior. Springer-
Verlag, 1994.

10

34 Qualitative Reasoning of Stochastic Models and the Role of Flux

A New Deadlock-Checking Method for PEPA

Jie Ding ∗ Jane Hillston †

August 18, 2009

Abstract

This paper presents the Place/Transition structure underlying PEPA models. Based on
this structure and techniques developed for Petri nets, an efficient deadlock-checking method
is proposed, which avoids the state-space explosion problem.

1 Introduction

Deadlock-checking is an important topic in qualitative analysis of computer and communication
systems. The current deadlock-checking algorithm for PEPA relies on exploring the entire state
space to find whether a deadlock exists. For large scale PEPA models, deadlock-checking
becomes impossible due to the state-space explosion problem. In this paper we will show
that there is a Place/Transition (P/T) structure underlying each PEPA model. Based on the
techniques developed in the context of P/T systems in Petri nets, we will present a structure-
based deadlock-checking approach for PEPA which avoids the state-space explosion problem.

The PEPA models we consider satisfy two assumptions: there is no cooperation within
groups of components of the same type; and each column of the activity matrix of a model is
distinct, i.e. each labelled activity is distinct in terms of pre and post local derivatives (this will
be explained in detail later).

2 Place/Transtion Structure underlying PEPA Models

In [5] Hillston defined a numerical state vector to numerically and compact represent the states
of PEPA models. This approach was expanded in [3], where the labelled activity and activity
matrices were defined to capture structural information of a model. Based on these definitions,
this section will establish that there is a P/T structure underlying each PEPA model. We begin
by recalling the activity matrices definitions and the concept of a P/T system.

2.1 Background definitions

In the modified definition of activity matrix, the labelled activity matrix, we take care to dis-
tinguish activities which have different outcomes even if they involve the same components. To
aid in doing this we split the components associated with an activity into pre and post sets.
When we are not concerned with the rate we will denote a transition between local derivatives
U and V by U

l−→ V ; to take into account the different rates which may be exhibited by an

action in different contexts we may write U
(l,rU→V

l)
−→ V .

∗{LFCS, School of Informatics; IDCom, School of Engineering}, University of Edinburgh. Email
address: j.ding@ed.ac.uk.

†LFCS, School of Informatics, University of Edinburgh. Email address: jane.hillston@ed.ac.uk.

1

35

Definition 1. (Pre and post local derivatives)

1. If a local derivative U can enable an activity l, i.e. U
l−→·, then U is called a pre local

derivative of l. The set of all pre local derivatives of l is denoted pre(l) and called the pre
set of l.

2. If V is a local derivative obtained by firing an activity l, i.e. · l−→V , then V is called a
post local derivative of l. The set of all post local derivatives is denoted post(l) and called
the post set of l.

3. The set of all local derivatives derived from U by firing l, i.e. post(U, l) = {V | U l−→ V },
is called the post set of l from U .

In order to distinguish activities with different outcomes we define the labelled activity :

Definition 2. (Labelled Activity).

1. For any individual activity l, for each U ∈ pre(l), V ∈ post(U, l), label l as lU→V .

2. For a shared activity l, for each

(V1, V2, · · · , Vk) ∈ post(pre(l)[1], l)× post(pre(l)[2], l)× · · · × post(pre(l)[k], l),

label l as lw, where

w = (pre(l)[1] → V1, pre(l)[2] → V2, · · · , pre(l)[k] → Vk).

Each lU→V or lw is called a labelled activity. The set of all labelled activities is denoted by
Alabel . For labelled activities lU→V and lw, their respective pre and post sets are defined as

pre(lU→V) = {U}, post(lU→V) = {V }, pre(lw) = pre(l), post(lw) = {V1, V2, · · · , Vk}.

According to Definition 2, each lU→V or lw has a unique output. Note that no new activities
are created, since labels are only attached to an existing activity to distinguish the results after
this activity being fired.

The impact of labelled activities on local derivatives can be recorded in a matrix form, as
defined below.

Definition 3. (Activity Matrix, Pre Activity Matrix, Post Activity Matrix). For a
model with NAlabel labelled activities and ND distinct local derivatives, the activity matrix C
is an ND ×NAlabel matrix, and the entries are defined as following

C(Ui, lj) =


+1 if Ui ∈ post(lj)
−1 if Ui ∈ pre(lj)
0 otherwise

where lj is a labelled activity. The pre activity matrix Cpre and post activity matrix Cpost are
defined as

CPre(Ui, lj) =
{

+1 if Ui ∈ pre(lj)
0 otherwise.

,

CPost(Ui, lj) =
{

+1 if Ui ∈ post(lj)
0 otherwise.

2

36 A new deadlock checking algorithm for PEPA

Clearly, the pre activity matrix indicates the pre local derivatives for each labelled activity,
i.e. the local derivatives which can fire this activity. The post activity matrix indicates the post
local derivatives, i.e. the derived local derivatives after firing a activity. For a labelled activity
this should always be a singleton set. The activity matrix is equal to the difference between the
pre and post activity matrices, i.e. C = CPre −CPost. An algorithm for automatically deriving
the activity matrix and pre activity matrix from any PEPA model was previously presented
in [3].

The concepts of P/T net and P/T system originate in Petri net theory (“P/T” signifies
“place/transition”) but they can also be interpreted in terms of conditions and events.

Definition 4. (P/T net, Marking, P/T system, [1])

1. A Place/Transition net (P/T net) is a structure N = (P, T,Pre,Post) where: P and T
are the sets of places and transitions respectively; Pre and Post are the |P | × |T | sized,
natural valued, incidence matrices.

2. A marking is a vector m : P → N that assigns to each place of a P/T net a nonnegative
integer (number of tokens).

3. A P/T system is a pair S = 〈N ,m0〉: a net N with an initial marking m0.

2.2 Place/Transition Structure in PEPA Models

In order to take advantage of the theory developed for P/T systems in the context of PEPA
models we must first establish the P/T system corresponding to a given PEPA model. This is
straightforward given the definitions presented in the previous subsection.

From Definition 4, it is easy to see that the structure N =
(
D,Alabel,C

Pre,CPost
)

derived
from a PEPA model is a P/T net, where D,Alabel are the sets of all local derivatives and
labelled activities of the PEPA model respectively, and CPre,CPost are the pre and post activity
matrices respectively. Given a starting state m0, S = 〈N ,m0〉 is a P/T system. Clearly, each
reachable marking m from m0 is a state of the aggregated CTMC underlying the given PEPA
model. This leads us to:

Theorem 1. There is a P/T system underlying any PEPA model, that is 〈N ,m0〉, where m0

is the starting state; N =
(
D,Alabel,C

Pre,CPost
)

is P/T net: where D is the set of local

derivatives, Alabel is the labelled activity set; CPre and CPost are the pre and post activity
matrices respectively.

A P/T net, a particular class of Petri net, like PEPA provides a mathematical modelling
language for the description of discrete, distributed systems. In [6] Ribaudo has defined a
stochastic Petri net semantics for stochastic process algebras, including PEPA. As in our work
here, her approach associates each local derivative with a place and each activity with a tran-
sition. To cope with the difference between action types and transitions, she defined a labeling
function that maps transition names into action names. Similarly, our approach is to attach
distinct labels to each action name, as indicated by the definition of labelled activity. However,
since Ribaudo’s approach does not include aggregation as we do, the mapping semantics in [6]
does not help with the state-space explosion problem in structural analysis for large scale PEPA
models with repeated components.

Previous work on structural analysis of PEPA models in [4] has some similarities with our
approach. However, class of PEPA considered in [4] is somewhat restricted in particular no
repeated components are allowed. Moreover, the problem of the difference between actions and
transitions is not considered.

3

Jie Ding and Jane Hillston 37

2.3 Some terminology

Now we introduce some terminology related to P/T systems for PEPA models (see [1] for
reference).

A transition l is enabled at a state m iff m ≥ CPre[·, l]; its firing yields a new state

m = m0 + CPre[·, l]. This fact is denoted by m
l→m′. An occurrence sequence from m is

a sequence of transitions σ = t1 · · · tk · · · such that m t1→m1 · · ·
tk→mk · · · . The language of

S = 〈N ,m0〉, denoted by L(S) or L(N ,m0), is the set of all the occurrence sequences from
the starting state m0. A state m is said to be reachable from m0 if there exists a σ in L(S)
such that m0

σ→m, that is m = m0 + C · σ, where σ is the firing count vector corresponding
to σ. The set of all the reachable states from m, called reachability set from m, is denoted by
RS(N ,m). According to the definition, the reachability set of the P/T system S = 〈N ,m0〉 is

RS(N ,m0) =
{
m ∈ N|P | | ∃σ ∈ L(S) such that m = m0 + C · σ

}
.

where σ is the firing count vector of the occurrence sequence σ. Clearly, the reachability set
RS(N ,m0) is the state space of the CTMC underlying the given PEPA model starting from
m0. The correspondence between P/T systems and PEPA models is shown in Table 1.

Table 1: P/T structure in PEPA models
P/T terminology PEPA terminology
P : place set D: local derivative set
T : transition set Alabel: labelled activity set
Pre: pre- matrix CPre: pre- activity matrix
Post: post- matrix CPost: post- activity matrix
C = Pre−Post: incidence matrix C = CPre −CPost: activity matrix
m: marking m: state vector
RS(N ,m0): reachbility set (from m0) RS(N ,m0): state space (with starting state m0)

3 Improved Deadlock-Checking Method for PEPA

A deadlock is a state that cannot fire any activity. This section will present an efficient deadlock
checking method which does not heavily suffer the size of the state space.

3.1 Linearisation of state space

According to the definition, the reachability set RS(S) of a given PEPA model with the activity
matrix C and starting state m0 is

RS(N ,m0) =
{
m ∈ N|P | | ∃σ ∈ L(S) such that m = m0 + C · σ

}
.

The definition of the reachability set is descriptive rather than constructive, i.e. it does not
help us to derive and store the state space. Moreover, we should point out that, for some given
σ ∈ N|P |, m = m0 + Cσ ∈ N|P | may not be valid states because there may be no occurrence
sequences corresponding to these σ. However m is said to belong to a generalisation of the
reachability set: the linearised reachability set. Before giving these definitions, we first give the
analogies for flow and semiflow in the context of PEPA. (For the definitions of these concept
in the context of P/T system, see [1].)

4

38 A new deadlock checking algorithm for PEPA

Definition 5. (Flow, Semiflow, and Consistent) Let C be the activity matrix of a given
PEPA model.

1. A p-flow is a vector y : P → Q such that yTC = 0. Natural and nonnegative flows are
called semiflows: vectors y : P → N such that yTC = 0.

2. A basis (respectively, fundamental set) of p-flows (respectively p-semiflows),
B = {y1,y2, · · · ,yq} (respectively, Φ = {y1,y2, · · · ,yq}) is a minimal set which will
generate any p-flow (respectively, p-semiflow) as follows: y =

∑
yj∈Ψ kjyj, kj ∈ Q.

3. A t-flow is a vector x : P → Q such that Cx = 0. Natural and nonnegative flows are
called semiflows: vectors x : P → N such that Cx = 0. A model is consistent if there
exists a t-semiflow whose support covers P .

Obviously, p-semiflow is a special kind of p-flow while t-semiflow is a special t-flow. Let
B and Φ be bases of p-flows and fundamental sets of p-semiflows respectively. Then for any
m ∈ RS(N ,m0), we have Bm = 0 and Φm = 0. This does not imply that any m ∈ N|P |

that satisfies Bm = 0 or Φm = 0 is in RS(N ,m0). However, they do belong to generalised
reachability sets:

Definition 6. (Linearised Reachability Set, [7]) Let S be a P/T system.

1. Its linearised reachability set using the state equation is defined as

LRSSE(S) =
{
m ∈ N|P | | ∃σ ∈ N|T | such that m = m0 + C · σ

}
.

2. Its linearised reachability set using the state equation over reals is defined as

LRSSER(S) =
{
m ∈ N|P | | ∃σ ≥ 0 such that m = m0 + C · σ

}
.

3. Its linearised reachability set using a basis B of P-flows is defined as

LRSPf(S) =
{
m ∈ N|P | | B ·m = B ·m0

}
.

4. Its linearised reachability set using a the fundamental set of P-semiflows is defined as

LRSPsf(S) =
{
m ∈ N|P | | Φ ·m = Φ ·m0

}
.

It is obvious that RS(S) ⊆ LRSSE(S) ⊆ LRSSER(S) ⊆ LRSPf(S) ⊆ LRSPsf(S).

3.2 New Deadlock-checking method

This subsection presents an equivalent deadlock-checking theorem and deadlock-checking al-
gorithm. The theorem is presented without proof but details can be found in [2]. We first
introduce the concept of equal conflict (see [1]).

Definition 7. (Equal Conflict) Let N = (P, T, Pre, Post) be a P/T net. N is called equal
conflict (EQ), if pre(l) ∩ pre(l′) 6= ∅ implies Pre[·, l] = Pre[·, l′].

In the context of PEPA this can be interpreted as the P/T structure underlying a PEPA
model is EQ if and only if for any two labelled activities l and l′, their pre sets are either equal
or distinct, i.e. either pre(l) = pre(l′) or pre(l) ∩ pre(l′) = ∅.

5

Jie Ding and Jane Hillston 39

Now we state our equivalent deadlock-checking theorem.

Theorem 2. If the P/T system S underlying a PEPA model is a consistent, EQ system, then

1. LRSSE(S) is deadlock-free ⇐⇒ RS(S) is deadlock-free.

2. LRSSER(S) is deadlock-free ⇐⇒ RS(S) is deadlock-free.

3. LRSPf(S) is deadlock-free ⇐⇒ RS(S) is deadlock-free.

4. LRSPsf(S) is deadlock-free ⇐⇒ RS(S) is deadlock-free.

According to Theorem 2, for a consistent, EQ system S, to tell whether RS(S) has deadlocks
it is sufficient to check whether LRSPsf(S) has deadlocks. As we mentioned, the activity l is
disabled at m means that there exists a U such that m[U] < CPre[U, l]. Note that

m[U] < CPre[U, l] ⇐⇒ m[U] = 0 and CPre[U, l] = 1.

Thus only states m with zeros in some particular places can possibly have a deadlock. Based
on this idea, we provide a deadlock-checking algorithm, see Algorithm 1.

Algorithm 1 Deadlock-checking in LRSPsf

1: for all l ∈ Alabel do
2: if l is an individual activity then
3: K(l) = {m ∈ N|D| | m[U] = 0,CPre[U, l] = 1} // where {U} = pre(l)
4: else if l is a shared activity then
5: K(l) =

⋃
U∈pre(l)

{m ∈ N|D| | m[U] = 0,CPre[U, l] = 1}

6: end if
7: end for
8: K =

⋂
l∈Alabel

K(l)

9: If K
⋂

LRSPsf = ∅, then LRSPsf is deadlock-free. Otherwise, LRSPsf at least has one
deadlock.

Our deadlock-checking algorithm is structure- or equation-based, rather than state-space-
based, so it avoids searching the entire state space and thus avoids the state-space explosion
problem. Although Theorem 2 requires the conditions of consistent and EQ, Algorithm 1 is
free from these restrictions since it deals with the linearised state space. That means, for any
general PEPA model with or without the consistent and EQ restrictions, if the generalised state
space has no deadlocks reported by using Algorithm 1, then the model has no deadlocks. But if
it reports deadlocks in the generalised state space, it cannot tell whether there is a deadlock in
the model, except for a consistent and EQ model. The weakness of this approach is that some
symbolic computation may be needed. But at this cost, a non-negligible advantage has been
obtained: this method can tell when or how a system structure may have deadlocks.

6

40 A new deadlock checking algorithm for PEPA

Table 2: Activity matrix of Model 1
task1 task2

User1 −1 1
User2 1 −1

Provider1 −1 1
Provider2 1 −1

3.3 Example

Now we consider an example PEPA model which has a consistent and EQ P/T structure.

User1
def= (task1, 1).User2

User2
def= (task2, 1).User1

Provider1
def= (task1, 1).P rovider2

Provider2
def= (task2, 1).P rovider1

Model 1 def= (User1[M1] ‖ User2[M2]) BC
{task1,task2}

(Provider1[N1] ‖ Provider2[N2]).

Table 2 lists the activity matrix of Model 1. The activity matrix C and pre activity matrix
CPre are listed below:

C =


−1 1
1 −1
−1 1
1 −1

 , CPre =


1 0
0 1
1 0
0 1

 .

First, let us determine LRSPsf(S). Solving CTy = 0, we get a basis of the solution space
which forms the rows of Φ:

Φ =

 1 1 0 0
0 1 1 0
0 0 1 1

 .

Notice m0 = (M1,M2, N1, N2)T , so

LRSPsf(S) ={m ∈ N4 | Φm = Φm0}

=

m ∈ N4
∣∣ m[User1] + m[User2] = M1 + M2;

m[User2] + m[Provider1] = M2 + N1;
m[Provider1] + m[Provider2] = N1 + N2


Note that each of the semiflows corresponds to an invariant of the model. The first and third
express the fact that the number of users, and the number of providers respectively, is con-
stant within the model. The second expresses the coupling between the components, i.e. the
cooperations ensure that the numbers of local derivatives in the two components always change
together.

Secondly, we determine the potential deadlock set K for each activity. According to Algo-
rithm 1,

K(task1) = {m | m[User1] = 0 or m[Provider1] = 0},

K(task2) = {m | m[User2] = 0 or m[Provider2] = 0},

7

Jie Ding and Jane Hillston 41

K =K(task1) ∩K(task2)
={m | m[User1] = 0,m[User2] = 0} ∪ {m | m[User1] = 0,m[Provider2] = 0}
∪ {m | m[Provider1] = 0,m[User2] = 0} ∪ {m | m[Provider1] = 0,m[Provider2] = 0}

Finally, the deadlock set in LRSPsf is

K ∩ LRSPsf

=

m ∈ N4
∣∣ m[User1] + m[User2] = M1 + M2;

m[User2] + m[Provider1] = M2 + N1;
m[Provider1] + m[Provider2] = N1 + N2

⋂
{m | (m[User1] = m[Provider2] = 0) ∨ (m[Provider1] = m[User2] = 0)}

=
{
m ∈ N4 | (m = (0,M1 + M2, N1 + N2, 0)T ∧M1 + N2 = 0)

∨ (m = (M1 + M2, 0, 0, N1 + N2)T ∧M2 + N1 = 0)

}
=

{
m ∈ N4 | (m = (0,M1 + M2, N1 + N2, 0)T ∧M1 = N2 = 0)

∨ (m = (M1 + M2, 0, 0, N1 + N2)T ∧M2 = N1 = 0)

}
.

In other words, for Model 1 with m0 = (M1,M2, N1, N2)T , only when M1 = N2 = 0 or
M2 = N1 = 0, K ∩ LRSPsf 6= ∅, i.e. the system has at least one deadlock. Otherwise, the
system is deadlock-free as long as M1 + N2 6= 0 and M2 + N1 6= 0.

This example illustrates that our deadlock-checking method can not only tell whether a
particular system is deadlock-free but also how a system structure may lead to deadlocks.

4 Summary

This paper has revealed the P/T structure underlying PEPA models. Based on techniques
developed for P/T systems, we proposed a new deadlock-checking algorithm for PEPA models,
which can efficiently reduce the computational complexity of deadlock-checking and avoid the
state-space explosion problem.

References

[1] J. M. Colom, E. Teruel, and M. Silva. Logical properties of P/T system and their analysis. MATCH
Summer School (Spain), Septemper 1998.

[2] Jie Ding. Structural and Fluid Analysis of Large Scale PEPA models — with Applications to Content
Adaptation Systems. PhD thesis, The Univeristy of Edinburgh, 2009.

[3] Jie Ding and Jane Hillston. Consistency and convergence of fluid approximations of PEPA models.
Technical report, The University of Edinburgh, UK, July 2008.

[4] Stephen Gilmore, Jane Hillston, and Laura Recalde. Elementary structural analysis for PEPA.
Technical report, The University of Edinburgh, UK, December 1997.

[5] J. Hillston. Fluid flow approximation of PEPA models. In International Conference on the Quanti-
tative Evaluation of Systems (QEST’05). IEEE CS Press, 2005.

[6] Marina Ribaudo. Stochastic Petri net semantics for stochastic process algebras. In Proceedings of the
Sixth International Workshop on Petri Nets and Performance Models, Washington DC, USA, 1995.
IEEE Computer Society.

[7] M. Silva, E. Teruel, and J. M. Colom. Linear algebraic and linear programming techniques for
the analyisis of place/transition net systems. In Lecture Notes in Computer Science, volume 1491.
Springer-Verlag, 1996.

8

42 A new deadlock checking algorithm for PEPA

A general result for deriving product-form solutions in
Markovian models

Andrea Marin Maria Grazia Vigliotti
Università Ca’ Foscari di Venezia Imperial College London

Abstract

In this paper we provide a general method to derive product-form solutions for stochastic models.
We take inspiration from the Reversed Compound Agent Theorem [3] and we provide new result using
labeled Markov automata. Our result is a generalization of RCAT which encompasses a bigger class of
product-form solutions and its proof is based on solving theglobal balance equations.

1 Introduction

Product-form solutions have been extensively studied for different systems in the theory of Markovian
stochastic models. The holy grail in this field consists in finding general conditions that characterize (most
of) the systems that have product-form solutions. In this direction a lot of work has been done using Gener-
alized Stochastic Petri Nets (GSPNs) [1] and Performance Evaluation Process Algebra (PEPA) [6, 2, 8, 3, 4].
In this paper we use a variant oflabeled stochastic automatato study product-form solutions. Our starting
point is the Reversed Compound Agent Theorem (RCAT)[3] and we expand that work in different directions:

• There are some limitations in the original formulation of RCAT [3]. To show this we have produced
an example in [7] which shows that a model exists that enjoys the product-form solution but the
structural conditions of RCAT, for such model, do not hold. The logical conclusion is that more
general conditions exist that characterize a larger class of systems that enjoy product-form solutions.

• We provide a new, entirely different proof of the theorem (with respect to that formulated for RCAT)
based on the global balance equation analysis. The proofs inthe original paper [3] and all their
subsequents were based on the application of Kolmogorov’s criteria.

We have decided to depart from the original formulation of the theorem in terms of PEPA in favour of the
new formulation based on labeled automata since:

1. The definition of labelled Markov automata retains the compositionally of process algebra, and allows
for modular descriptions of systems.

2. Labelled Markov automata is a general enough framework for comparing different product form re-
sults specified in various formalisms such as queueing networks, stochastic Petri nets, PEPA etc.

3. Our new proof, which is formulated using global balance equations, is naturally cast in terms of
labelled Markov automata.

1

43

2 Labeled Markov automata (LMA)

We assume the reader familiar with probability theory and the basics ofCTMCs. In this section we provide
the basic definitions that will allow us to define the cooperation amongCTMCs.

Definition 2.1 (Labeled automaton) A Markov automaton is a tupleM = 〈S, Act,→〉 such that:

1. S is the denumerable set of states withs1, s2, . . . sn, . . . range over it,

2. Act is the set ofaction labelswith a, b, . . . range over it,

3. → is the transition relation between states defined as→: S × Act× (IR+ ∪Var) × S, whereIR
+ is

the set of positive real numbers andVar is the set of variable names.

For readability, we write(s1, a, λ, s′1) ∈→ ass1
a,λ

−→ s′1.

Initially, one can think LMA as aCTMC where the transitions have been labeled. The reader might be
puzzled by the use of labels, their rôle will become apparent in the following definition of interactive Markov
automata, where the labels will help in defining which actions should co-operate and which should not.

Definition 2.2 (Interacting LMAs) LetM1 = 〈S1, Act1,→1〉 andM2 = 〈S2, Act2,→2〉 be two LMAs.
The interactingLMAM1 ⊕L M2 = 〈S, Act,→, 〉 with L ⊆ Act1 ∩ Act2 is a new automata defined as
follows:

1. S = S1 × S2.

2. Act= Act1 ∪ Act2.

3. → is the smallest relation defined by the rules below:

s1
a,λ

−→1 s′1 s2
a,xa−→2 s′2

(s1, s2)
a,λ

−→ (s′1, s
′
2)

(a ∈ L)

s1
a,r

−→1 s′1

(s1, s2)
a,r

−→ (s′1, s2)
(a /∈ L)

We have omitted the symmetric rules. We reserve the Greek letters to range overIR+ and the Romanu, q, p
over IR+ ∪Var and the letterxa, ya, za . . . to range overVar. We call the set of labelsL the cooperation
set. The set of active actionsA(M) is defined as:a ∈ A(M) if, for somes, s

a,λ

−→ s′ with λ ∈ IR
+. The set

of passive actionsP(M) is defined as:a ∈ P(M) if, for somes, s
a,xa−→ s′, with xa ∈ Var.

The definitions above show that LMAs can perform more transitions than labeledCTMCs. First of all,
transitions are divided into active and passive. Cooperation between automata happens only between an
active and a passive action, never between two active actions or two passive actions. In the cooperation the
unspecified rate moves at the speed of the automaton with the active rate. The meaning of passive transition
is directly inspired by PEPA [5], instead of using the symbol⊤ we use variables for convenience. Note that
our cooperation is more restrictive with respect to the one defined in PEPA, yet fully adequate to the purpose

2

44 A general result for deriving product-form solutions in Markovian models

of our work. Generalization of cooperating automata that deals with active-active transitions is possible, but
outside the scope of our work. If an automaton does not contain any passive transition, then the underlying
model description is aCTMC. To see this it suffices to associate to each transitions1

a,λ

−→ s2 a random
variableXa,λ such thatIP(Xa,λ ≤ t) = 1− e−λt. On this basis we justify the following definitions.

Definition 2.3 (Open and closed automata)We distinguish the following classes of automata:

1. A LMAM = 〈S, Act,→〉 is calledopenif there exists a labela ∈ Act and a states ∈ S such thata
passively enabled ins, i.e.,∃s′ ∈ S such thats

a,xa−→ s′ ands 6= s′.

2. A LMAM = 〈S, Act,→〉 is calledclosedif it is not open.

Given a closed LMAM all the transitions are carried out according to an exponentially distributed
random delay. If more than one transition is possible from a states a probabilistic choice will occurs. It
is easy to show that the sojourn time in each state of any LMA isexponentially distributed and that the
underlying time-homogenuousCTMC is derived in the usual manner [5]. The notation for the derivation
of theCTMC here is consistent with [5]. Once established how to derive theCTMC we can talk directly
about the properties of the LMA, meaning those properties oftheCTMC. The analysis of LMAs modeling
power is out of the scope of this paper, thus we introduce a setof restrictions that simplifies the presentation
of the theoretical result about the product-form solutionsof cooperating LMAs. It should be pointed out
that although these restrictions limit the flexibility of LMA modeling, they do not reduce the applicability
of the results that will follow. In practice, we require awell-formedLMA M = 〈S, Act,→〉 to satisfy the
following properties:

1. given a labela ∈ Actthen all the transitions labeled bya are either active or passive:A(M)∩P(M) =
∅

2. if a is a passive label, then for every states of the automaton there exists only one transition labeled by
a outgoing froms i.e. ∀s∃s′ ∈ S, s

a,xa−→ s′ ∧ ∀s, s′, s′′ ∈ S, s
a,xa−→ s′ ∧ s

a,xa−→ s′′ =⇒ s′ = s′′

For the rest of the paper we assume to work with well-formed Markov automata.

3 Product-form solutions

Let us consider two (well-formed) automataM1 andM2. We are interested in expressing the steady state
distribution ofM1 ⊕LM2 as the steady state distribution of each component. Before introducing the main
theorem we define a last operation on the automata, i.e., the closure with respect to a label.

Definition 3.1 (Closure of an automaton)LetM = 〈S, Act,→M〉 be a LMA anda ∈ P(M), then the
closureofM, writtenM{a← λ}, is defined asM{a← λ} = 〈S, Act,→M{a←λ}〉, where

→M{a←λ}= {(si, b, t, sj) : (si, b, t, sj) ∈→M ∧ b 6= a ∧ t ∈ IR
+}∪

{(si, a, λ, sj) : (si, a, xa, sj) ∈→M}

Several closures may be specified in a compact way, e.g., leta, b ∈ P(M), thenM{xa ← λ1, xb ← λ2}
corresponds to(M{xa ← λ1}){xb ← λ2}

In the following theorem we usea1, a2, . . . to denote the labels, andx1, x2, . . . to denote the variables
(instead ofxa1 , xa2 . . .).

3

Andrea Marin and Maria Grazia Vigliotti 45

Theorem 3.2 LetM1 andM2 be two well-formed LMAs that cooperate on a finite set of labels L =
{a1, . . . , an}, such thatM1 ⊕LM2 is ergodic.

If there exists the set of rates{λ1, . . . , λn} 6= ∅ which satisfies the following equations:

∀sk ∈ S1, ∀ai ∈ A(M1)

P

sj∈S1

q(sj ,ai,sk)π1(sj)

π1(sk) = λi (1)

or

∀sk ∈ S2, ∀ai ∈ A(M2)

P

sj∈S2

q(sj ,ai,sk)π2(sj)

π2(sk) = λi (2)

whereπ1 andπ2 are the stationary probability distributions of the closedautomataM†1 andM†2:

M†1 =M1{ai ← λi : ai ∈ P(M1)} M†2 = M2{ai ← λi : ai ∈ P(M2)}

then the steady-state solution ofM1 ⊕LM2 has the product-form:

π(M1 ⊕LM2) ∝ π1(M
†
1)π2(M

†
2) (3)

whereπi is the steady state distribution ofMi, with i = 1, 2.

Note that Equations (1) and (2) basically say that the total flow incoming into a state due to the active
transitions labeled bya must be proportional to the stationary probability of that state in the closure of the
automaton.

In what follows we present the proof assuming that automata synchronise on label‘a′ only. This is only
for readability. The proof with any number of synchronizinglabels is a simple generalization of the one
presented below.

Proof 1 Without loss of generality we assume thata is active inM1 and passive inM2. The global balance
equations (GBEs) forM1 andM†2 are:

πM1(r)
` X

r′∈SM1

qM1(r, a, r
′) +

X

r′∈SM1

b6=a

qM1(r, b, r
′)

´
=

qM1(r
′
, a, r)πM1(r

′) +
X

r′∈SM1

b6=a

qM1(r′, b, r)πM1(r
′) (4)

π
M
†
2
(s)

`
q
M
†
2
(s, a, s

′)
| {z }

λ

+
X

s′∈S
M
†
2

b6=a

q
M
†
2
(s, b, s′)

´
=

X

s′∈S
M
†
2

b6=a

q
M
†
2
(s′, b, s)π

M
†
2
(s′) +

X

s′∈S
M
†
2

q
M
†
2
(s′, a, s)

| {z }

λ

π
M
†
2
(s′) (5)

4

46 A general result for deriving product-form solutions in Markovian models

whereλ is the rate that we substitute into the passive transition ofM2 to makeM†
2. The GBE for the joint state space

(r, s) ∈ SM1
× SM2

is:

π
`
(r, s)

´“ X

r′∈SM1

b6=a

q((r, s), b, (r′, s)) +
X

s′∈SM2

b6=a

q((r, s), b, (r, s′)) +
X

(r′,s′)∈SM1
×SM2

q((r, s), a, (r′, s′))
”

=

X

r′∈SM1

b6=a

q((r′, s), b, (r, s))π
`
(r′, s)

´
+

X

s′∈SM2

b6=a

q((r, s′), b, (r, s))π
`
(r, s′)

´

+
X

(r′,s′)∈SM1
×SM2

q((r′, s′), a, (r, si))π
`
(r′, s′)

´
(6)

We substitute product form and we rewrite the rates in each term with the rates of each automaton taking into account
self loops:

πM1(r)π
M
†
2
(s)

“ X

r′∈SM1

b6=a

qM1(r, b, r
′) +

X

s′∈S
M
†
2

b6=a

q
M
†
2
(s, b, s′) +

X

(r,s)
a,q(r,a,r′)

−→ (r′,s′)

qM1(r, a, r
′) +

X

(r,s)
a,q(r,a,r)
−→ (r,s′)

qM1(r, a, r)
”

=
X

r′∈SM1

b6=a

qM1(r
′
, b, r)πM1(r′)π

M
†
2
(s) +

X

s′∈S
M
†
2

b6=a

q
M
†
2
(s′, b, s)πM1(r)πM†

2
(s′) +

X

(r′,s′)
a,q(r′,a,r)

−→ (r,s)

qM1(r′, a, r)πM1(r
′)π

M
†
2
(s′) +

X

(r,s′)
a,q(r,a,r)
−→ (r,s)

qM1(r, a, r)πM1(r)πM†
2
(s′)

After a few algebraic manipulations substituting the rightpart of equation (4) we obtain:

qM1(r
′
, a, r)

πM1(r′)

πM1(r)
+

X

(r,s)
a,q(r,a,r)
−→ (r,s′)

qM1(r, a, r) +
X

s′∈S
M
†
2

b6=a

q
M
†
2
(s, b, s′) =

X

s′∈S
M
†
2

b6=a

q
M
†
2
(s′, b, s)

π
M
†
2
(s′)

π
M
†
2
(s)

+
X

(r′,s′)
a,q(r′,a,r)

−→ (r,s)

qM1(r′, a, r)
πM1(r′)π

M
†
2
(s′)

π
M
†
2
(s)πM1(r)

+

X

(r,s′)
a,q(r,a,r)
−→ (r,s)

qM1(r, a, r)
π
M
†
2
(s′)

π
M
†
2
(s)

By observing thatλ is the reversed rate and with further algebraic manipulations we obtain the following.

π
M
†
2
(s)(q

M
†
2
(s, a, s

′) +
X

(r,s)
a,q(r,a,r)
−→ (r,s′)

qM1(r, a, r) +
X

s′∈S
M
†
2

b6=a

q
M
†
2
(s, b, s′)) =

X

s′∈S
M
†
2

b6=a

q
M
†
2
(s′, b, s)π

M
†
2
(s′) +

X

s′∈S
M
†
2

q
M
†
2
(s′, a, s)π

M
†
2
(s′) +

X

(r,s′)
a,q(r,a,r)
−→ (r,s)

qM1(r, a, r)π
M
†
2
(s′)

This latter can be derived from (5).

5

Andrea Marin and Maria Grazia Vigliotti 47

In the proof above self-loops were considered. While self-loops do not change the behavior of the Markov
Chain, i.e., they have no effect on the global balance equations of a single automaton, they are important in
the definition of the structure of the interacting LMA.

In this paragraph we aim to point out the main difference between Theorem 3.2 and RCAT. Our notion
of well-formed automaton reflects a structural condition ofRCAT, i.e., for each passive labela, exactly one
passive transition outgoes from every state. Moreover, RCAT requires that:

∀sk ∈ S1, ∀ai ∈ A(M1)
q(sj , ai, sk)π1(sj)

π1(sk)
= λi,

wheresj is theonlystate inM†1 with an active transition labeled byai going into that statesk. If we observe
thatλi is the reversed rate ofq(sj , ai, sk) then we can see that RCAT requires that the reversed rate of any
active actiona has to be constant. By contrast, in our theorem we require thesumof the reversed rates of
the active transitions to be constant in each state rather that the reversed rate of each active transition. This
is a generalization of the condition of RCAT. The distinction presented here is not trivial. In fact, we have
shown in [7] different examples in which Theorem 3.2 holds while the original RCAT does not.

4 Conclusion

In this paper we have proposed an extension of the Reversed Compound Agent Theorem (RCAT) for the
analysis of product-form models. We have shown that it possible to relax its structural conditions in order to
deal with a larger class of product form solutions. As futurework is concerned we aim to extend the proof
developed in this paper to the ERCAT [4].

References

[1] G. Balbo, S. C. Bruell, and M. Sereno. Product form solution for Generalized Stochastic Petri Nets.
IEEE Trans. on Software Eng., 28:915–932, 2002.

[2] P. Harrison and J. Hillston. Exploiting quasi-reversible structures in Markovian process algebra models.
The Computer Journal, 38(7):510–520, 1995.

[3] P. G. Harrison. Turning back time in Markovian process algebra. Theoretical Computer Science,
290(3):1947–1986, January 2003.

[4] P. G. Harrison. Reversed processes, product forms and a non-product form. Linear Algebra and Its
Applications, 386:359–381, July 2004.

[5] J. Hillston.A Compositional Approach to Performance Modelling. PhD thesis, Department of Computer
Science, University of Edinburgh, 1994.

[6] J. Hillston and N. Thomas. Product form solution for a class of PEPA models.Perform. Eval., Elsevier,
35(3–4):171–192, 1999.

[7] A.. Marin and M. G. Vigliotti A general result for deriving product-form solutions of Markovian models.
Submitted, 2009.

[8] M. Sereno. Towards a product form solution for stochastic process algebras.The Computer Journal,
38(7):622–632, December 1995.

6

48 A general result for deriving product-form solutions in Markovian models

Using ODEs from PEPA models to derive
asymptotic solutions for a class of closed queueing

networks
Nigel Thomas

School of Computing Science, Newcastle University, UK
Email: Nigel.Thomas@ncl.ac.uk

Abstract—In this paper a class of closed queueing network
is modelled in the Markovian process algebra PEPA. It is
shown that a fluid flow approximation using ordinary differential
equations (ODEs) gives rise to well known asymptotic results.
This result gives context to the use of a fluid flow approximation
and is potentially useful in cases where the model is not obviously
a closed queueing network. The approach is illustrated using
examples of a secure key distribution centre and a multi-user
query processing system.

I. I NTRODUCTION

Since the introduction of stochastic process algebra, there
have been many attempts to tackle the state space explo-
sion problem caused by the composition of many parallel
components (see [10] for example). One of the more recent
approaches to the issue has been the introduction of fluid
flow approximations from systems biology to tackle models
where there is a large number of instances of a particular
component. Such an approach gives rise to a system of
ordinary differential equations, which are generally solved
by simulation. Following original work by Hillston [11] on
biological systems, this style of fluid approximation has also
been applied to more traditional computer applications e.g. [5],
[17]. However, this approach has met with some scepticism
amongst some computer scientists for a number of reasons.
The main criticism is that the approximation maps a stochastic
model specification on to a deterministic representation, thus
the intrinsic randomness of the system is lost. In addition it can
be difficult to derive important computer performance mea-
sures such as utilisation (because the fluid is always flowing)
and interpreting the behaviour of a continuous fragment of a
component does not always make sense. For a full description
of the application of fluid approximations to PEPA models,
see [2], [7], [8], [11].

In this paper we use the ODE approach to derive an analyti-
cal solution to a class of model, specified using the Markovian
process algebra PEPA [9]. It is shown that this solution is
identical to that used for many years as an asymptotic solution
to the mean value analysis of closed queueing networks. This
has two clear benefits.

• By relating the fluid flow approximation to established
results in queueing theory, we gain greater confidence in
the use of ODEs as a solution method.

• By deriving the ODE solution directly from the PEPA
model specification, the asymptotic results become easily
available in the analysis of models which are not obvi-
ously closed queueing networks. Thus the applicability
of the asymptotic solution is practically extended without
the need for specialist knowledge or insight on the part
of the modeller.

The paper is organised as follows. In the next section the
model and its asymptotic solution are introduced, followed
by the PEPA specification of the class of model under in-
vestigation. We show how the ODEs can be derived from
the PEPA specification and solved analytically to give the
asymptotic solution. The process is illustrated by means of
two examples; a secure key exchange protocol and a multi-
user query processing system. Finally, some conclusions are
drawn and potential future work is discussed.

II. T HE MODEL AND ITS ASYMPTOTIC SOLUTION

Consider a model of a closed queueing network ofN jobs
circulating aroundM service stations, denoted 1 toM ; each
station is either a queueing station or an infinite server station.
There areMq queueing stations. At each queueing station,i,
there is an associated queue (bounded atN) operating a FCFS
policy and Ki servers which serve jobs at rateri. At each
infinite server station,j, jobs experience a random delay with
mean1/rj . All services are negative exponentially distributed.
Let M = {1, 2, . . . , M} be the set of all queueing stations.

Queueing models of this form have traditionally been solved
using mean value analysis [14]. However, this solution be-
comes costly whenN is large and so a number of approxima-
tions have been proposed. The simplest amongst these is the
asymptotic bound (see Haverkort [6] pp. 245-247).

DefineVi to be the visit count, the ratio of visits made to
station i relative to station 1 (henceV1 = 1). Now consider
the smallest possible population size,N = 1. This solitary job
would find each queue empty and experience a delay of1/ri

at each stationi at each visit. Hence, the average number of
jobs at stationi whenN = 1, Li(1), is given by the proportion
of time a job spends there. Similarly, whenN > 1 but still
small, a job entering a station has a high probability that there
will be at least one idle server, hence the delay at stationi is
still approximately1/ri. The sum of all average queue lengths

49

must beN , hence,

Li(N) ≥
NVi

ri

∑M
j=1

Vj

rj

(1)

Now consider the case whenN is very large. Assume that
there is one queueing station with less service capacity than
all the other queueing stations, denoted byi = 1. Obviously
as N → ∞ the utilisation of this bottleneck station will
approach 1 and its throughput will tend toK1r1, i.e. it
becomes saturated. Obviously, the throughput must balance
across all stations, hence,K1r1 = ViLiri ∀i ≥ 2. Thus,

Li(N) =
K1r1

Viri
, i ≥ 2 (2)

The sum of all queues must equalN , hence

L1(N) ≤ N −
M
∑

i=2

K1r1

Viri
(3)

Thus, for station 1 the approximate average queue length
when the population size isN is given by

Max

[

N

r1

∑M
i=1

Vi

ri

, N −

M
∑

i=2

K1r1

Viri

]

And for all other stations,i, the approximate average queue
length when the population size isN is given by,

Max





NVi

ri

∑M
j=1

Vj

rj

,
K1r1

Viri





Clearly a very simple approximation for the average re-
sponse time has been used to make this calculation for average
queue length. However, if our goal is to find the average
response time when the population size isN , W (N), a much
better estimate can be found by combining this approximation
for Li(N−1) with the mean value analysis estimation to give,

W1(N) =
1

r1
+

1

r1
Max

[

N − 1

r1

∑M
i=1

Vi

ri

, N − 1−

M
∑

i=2

K1r1

Viri

]

(4)
and,

Wi(N) =
1

ri
+

1

ri
Max





(N − 1)Vi

ri

∑M
j=1

Vj

rj

,
K1r1

Viri



 , 2 ≤ i ≤ M

(5)
This is essential a single step of the mean value analysis
algorithm (theN th step) with all previous steps replaced by
the asymptotic approximation. The total average respone time,
that is the average time from leaving node 1 to subsequently
completing another service at node 1, can be found by sum-
ming Wi(N) over all nodes,i.

It is a simple matter to consider the case where there is
more than one bottleneck, although this is not a concern in this
paper. Clearly these two sets of asymptotic results are most
accurate at their extremes, i.e. whenN = 1 or asN → ∞.
Thus the asymptotic solution is least accurate when the two

curves forLi meet. There are a number of other approxi-
mations and enhancements which seek to improve accuracy
and applicability without the additional computational cost
associated with mean value analysis.

This form of simple approximation is generally applied
across the entire network to derive measures such as system
throughput and response time. However, it may also be ap-
plied to single nodes as outlined above. In such situations
the accuracy of the approximation is greatly variable. The
approximation generally works well when queueing only has
a significant effect at one station. This situation arises when
there is only one queueing station (the remainder being infinite
service stations) or where one queueing station has much less
service capacity than the others, relative to load.

III. A CLASS OF CLOSED QUEUEING NETWORKS INPEPA

The model introduced in Section II is now modelled in
PEPA. Clearly there are many possible ways to model this
system and the particular form of the PEPA model here is a
design choice. In particular, the model has been specified in
such a way that the ODEs can be derived easily (without fur-
ther transformation) and all behaviours are named, to improve
clarity.

In PEPA a queue station can be modelled as

QStationi
def
= (servicei, ri).QStationi , ∀i ∈M

The infinite server stations are not represented explicitly.
Each job will receive service from a sequence of stations

determined by a set of routing probabilities,

Jobi
def
=

M
∑

j=1

(servicei, Pij(i)ri).Jobj , 1 ≤ i ≤ M

Where,
M
∑

j=1

Pij(i) = 1 , 1 ≤ i ≤ M

The entire system can then be represented as follows:
(

∏

∀i∈M

QStationi[Ki]

)

⊲⊳
L

Job1[N]

WhereL is the set of all action typesservicei wherei ∈M.
The ODEs for such a system are relatively simple to derive

directly:

d

dt
Jobi =

∑

∀j /∈M

Pji(j)rjJobj(t)

+
∑

∀j∈M

Pji(j)rj min[Kj, Jobj(t)]

−riJobi(t) , ∀i /∈M

d

dt
Jobi =

∑

∀j /∈M

Pji(j)rjJobj(t)

+
∑

∀j∈M

Pji(j)rj min[Kj, Jobj(t)]

−min[Ki, Jobi(t)]ri , ∀i ∈ M

50Using ODEs from PEPA models to derive asymptotic solutions for a class of closed queueing networks

ODEs such as these can be solved in a number of ways.
Most commonly they would be simulated with a suitably small
time step to findJobi(t). In general, this quantity tends to a
constant value ast →∞, i.e. it has a steady state solution.

An alternative method for findinglimt→∞ Jobi(t) is to
solve the ODEs analytically. Such a solution is based on the
assumption that the system of ODEs will eventually reach a
steady state. Thus the derivatives will tend to zero ast tends
to ∞, i.e.

lim
t→∞

d

dt
Jobi → 0 , 1 ≤ i ≤ M

This gives rise to the following set of simple simultaneous
equations:

lim
t→∞

∑

∀j /∈M

Pji(j)rjJobj(t)

+
∑

∀j∈M

Pji(j)rj min[Kj, Jobj(t)]

= lim
t→∞

riJobi(t) , ∀i /∈ M

lim
t→∞

∑

∀j /∈M

Pji(j)rjJobj(t)

+
∑

∀j∈M

Pji(j)rj min[Kj, Jobj(t)]

= lim
t→∞

ri min[Ki, Jobi(t)] , ∀i ∈M

There areM equations, but each equation can be expanded
(with respect tomin function) in up to2Mq ways.

Define the probability that a component will evolve from
Jobi to Jobj , without revisitingJobi, as follows:

Pij(i) = pij +
∑

∀k/∈σ

pikPkj(i)

Clearly the system is irreducible if

Pij(i) > 0 ∀i, j , i 6= j

DefineLi to be the steady state average number of compo-
nents behaving asJobi, given by

Li = lim
t→∞

Jobi

Now selecti ∈ M such that1

Pij(i)riKi < Pji(j)rjKj ∀j ∈M , j 6= i (6)

Hence,

• If Ki ≤ Li then

Pij(i)riKi = Pji(j)rjLj , ∀j (7)

• If Ki > Li then

Pij(i)riJobi = Pji(j)rjLj , ∀j (8)

1If (6) does not hold then there is no unique solution for this fluid system
except whenN is very small. Instead the value ofLi will depend on the
initial valuesJobi(0) ∀i.

Thus, if Ki ≤ Li then

Lj =
Pij(i)riKi

Pji(j)rj
, ∀j 6= i (9)

Li = N −
∑

∀j 6=i

Lj = N −
∑

∀j 6=i

Pij(i)riKi

Pji(j)rj
(10)

Otherwise, ifKi ≥ Li then

Lj =
Pij(i)ri

Pji(j)rj
Li , ∀j 6= i (11)

Li = N −
∑

∀j 6=i

Lj =
N

1 +
∑

∀j 6=i
Pij(i)ri

Pji(j)rj

(12)

Clearly (10) and (12) meet whenKi = Li. This point is
given by the population sizeN = N∗, given by

N∗ = Ki



1 +
∑

∀j 6=i

Pij(i)ri

Pji(j)rj





Thus, if N ≤ N∗ then

Lj =
Pij(i)ri

Pji(j)rj
Li , ∀j 6= i (13)

Li = N −
∑

∀j 6=i

Lj =
N

1 +
∑

∀j 6=i
Pij(i)ri

Pji(j)rj

(14)

Otherwise, ifN ≥ N∗ then

Lj =
Pij(i)riKi

Pji(j)rj
, ∀j 6= i (15)

Li = N −
∑

∀j 6=i

Lj = N − riKi

∑

∀j 6=i

Pij(i)

Pji(j)rj
(16)

Clearly, the visit count is given byVi = Pij(i)/Pji(j).
Hence (13), (14), (15) and (16), are equivalent to (1), (2) and
(3). Observe also that (13) and (14) hold, with arbitraryi,
regardless of the existence of (6) as long asLj ≤ Kj ∀j.

From these expressions forLj we can derive the average
response time at stationj when the population size isN ,
Wj(N) in the same was as 4 and 5.

Wj(N) =
1

rj
, Lj(N − 1) + 1 ≤ Kj

Wj(N) =
Lj(N − 1) + 1

Kjrj
, Lj(N − 1) + 1 > Kj

WhereLj(N) is the average number of jobs at stationj when
the population size isN . This computation forWj(N) is based
on the queueing theory result of an arrival as random observer,
see Mitrani [12] page 141 for example. If the random observer
sees a free server, then the average response time will be the
average service time. However, if the random observer sees all
the servers busy, then the average response time will be the
average service time plus the time it takes for one server to
become available (including scheduling the other jobs waiting
ahead of the random observer).

Nigel Thomas 51

In addition we can derive an expression for utilisation at the
bottleneck queueing stationi, Ui, based on the flow into the
station being equal to the available service.

Ui =
∑

∀j 6=i

Pji(j)Lj

rjKiri

IV. EXAMPLE 1: A SECURE KEY DISTRIBUTION CENTRE

Consider a model of the classic Needham-Schroeder key
distribution protocol (taken from [19]) specified as follows:

KDC
def
= (response, rp).KDC

Alice0
def
= (request, rq).Alice1

Alice1
def
= (response, rp).Alice2

Alice2
def
= (sendBob, rB).Alice3

Alice3
def
= (sendAlice, rA).Alice4

Alice4
def
= (confirm, rc).Alice5

Alice5
def
= (usekey, ru).Alice0

The system is then defined as:

KDC[K] ⊲⊳
response

Alice0[N]

Where,K is the number ofKDC’s and N is the number of
client pairs (Alices’s).

It is a simple matter to write down the ODEs for this system
as follows.

d

dt
Alice0 = ruAlice5(t)− rqAlice0(t)

d

dt
Alice1 = rqAlice0(t)− rp min(KDC(t), Alice1(t))

d

dt
Alice2 = rp min(KDC(t), Alice1(t))− rBAlice2(t)

d

dt
Alice3 = rBAlice2(t)− rAAlice3(t)

d

dt
Alice4 = rAAlice3(t)− rcAlice4(t)

d

dt
Alice5 = rcAlice4(t)− ruAlice5(t)

d

dt
KDC = 0

In this analysis we are interested primarily in the number
of client pairs awaiting a response from theKDC (or KDC’s)
from a population of sizeN , which we denote asL(N) This is
represented in the model by the number ofAlice1’s; L(N) =
limt→∞ Alice1(t) when there areN client pairs (Alice’s) in
the population.

If the system reaches a steady state then all the derivatives
will tend to zero ast tends to∞, i.e.

lim
t→∞

d

dt
Alicei → 0 , 0 ≤ i ≤ 5

Hence,

lim
t→∞

rp min(KDC(t), Alice1(t)) = lim
t→∞

rBAlice2(t)

= lim
t→∞

rAAlice3(t)

= lim
t→∞

rcAlice4(t)

= lim
t→∞

ruAlice5(t)

= lim
t→∞

rqAlice0(t)

Thus we only need to solve this set of simple parallel
equations to findL(N). If KDC(t) ≥ Alice1(t) then the
ODEs give rise to

L(N) = lim
t→∞

Alice1 =
Nrx

rx + rp
(17)

If KDC(t) ≤ Alice1(t) then the ODEs give rise to

L(N) = lim
t→∞

Alice1 =
Nrx −Krp

rx
(18)

Whererx is given by

rx =

(

1

rq
+

1

rB
+

1

rA
+

1

rc
+

1

ru

)−1

(19)

(17) and (18) meet whenKDC(t) = Alice1(t) for a given
population sizeN∗, hence, with (19) we get,

N∗ = K +
Krp

rx
= K + Krp

(

1

rq
+

1

rB
+

1

rA
+

1

rc
+

1

ru

)

Figure 1 shows the average response time of theKDC, found
approximately using (17) and (18) and computed exactly using
mean value analysis [16]. Clearly, when the service rate is
smaller, the response time is larger and its rate of increaseis
larger. As noted above, there is a difference between the two
solutions aroundN∗, which is clearly evident.

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N

WKDC

MVA, rp=1

MVA, rp=2

MVA, rp=4

ODE, rp=1

ODE, rp=2

ODE, rp=4

Fig. 1. Average response time at theKDC varied with population size
(rq = rB = rA = rc = 1, ru = 1.1, K = 1)

52Using ODEs from PEPA models to derive asymptotic solutions for a class of closed queueing networks

Figure 2 shows the average queue length at theKDC, LKDC

for this system when there is either one fast server orK slower
servers. When the population size is large (N > 30 in this
case) theKDC becomes saturated and there is consequently
no difference in the service rate offered between the two cases
shown. However, whenN is smaller, there will be periods
where one or more of theK servers will be idle, thus reducing
the overall service capacity offered. Hence, for smallerN ,
a single fast server will out perform multiple slower servers
with the same overall capacity. Once again, there is a clear
divergence aroundN∗.

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

N

LKDC

MVA: K=1, rp=4

ODE: K=1, rp=4

MVA: K=4, rp=1

ODE: K=4, rp=1

Fig. 2. Average queue length atKDC varied with population size (rq =
rB = rA = rc = 1, ru = 1.1)

V. EXAMPLE 2: A MULTI -USERQUERY PROCESSING

SYSTEM

Consider the following PEPA specification of a classic
model taken from Lazowska et al [13].

Proc
def
= (service, µ).P roc

Disk
def
= (write, η).Disk

User1
def
= (think, ξ).User2

User2
def
= (service, pµ).User1

+(service, (1− p)µ).User3

User3
def
= (write, η).User1

The entire system is then specified as

(Proc||Disk[K])
⊲⊳

{
service,

write }
User1[N]

This system depicts a processor and an array ofK inde-
pendent disks. Users request a service from the processor.
After this they either think for a while, before making another

request, or their result requires writing to a disk before
thinking and then another request.

The ODEs are given as

d

dt
User1(t) = pµ min[1, User2(t)]

+η min[K, User3(t)]

−ξUser1(t)
d

dt
User2(t) = ξUser1(t)− µ min[1, User2]

d

dt
User3(t) = (1 − p)µ min[1, User2(t)]

−η min[K, User3(t)]

If the system reaches a steady state then all the derivatives
will tend to zero ast tends to∞, i.e.

lim
t−→∞

d

dt
Useri −→ 0 , 0 ≤ i ≤ 5

DefineLi = limt−→∞ Useri to be the steady state average
number of users at each point in the system. Hence,

pµ min[1, L2] + η min[K, L3] = ξL1

ξL1 = µ min[1, L2]

(1 − p)µ min[1, L2] = η min[K, L3]

There are two possible bottlenecks in this system If(1 −
p)µ < Kη then the bottleneck is the processor.
• If 1 ≤ L2 then

L1 =
µ

ξ

L3 =
(1 − p)µ

η

L2 = N −
µ

ξ
−

(1− p)µ

η

• If 1 ≥ L2 then

L1 =
µ

ξ
L2

L3 =
(1− p)µ

η
L2

L2 = N −
µ

ξ
L2 −

(1− p)µ

η
L2

=
Nξη

ξη + µη + µξ(1 − p)

In this case,

N∗ =
ξη + µη + µξ(1 − p)

ξη

Alternatively, if (1 − p)µ > Kη then the bottleneck is
writing to the disks.
• If K ≤ L3 then

L1 =
ηK

(1− p)ξ

L2 =
ηK

(1− p)µ

L3 = N −
ηK

ξ(1− p)
−

ηK

µ(1− p)

Nigel Thomas 53

• If K ≥ L3 then

L1 =
η

(1− p)ξ
L3

L2 =
η

(1− p)µ
L3

L3 = N −
η

(1 − p)ξ
L3 −

η

(1− p)µ
L3

=
Nξµ(1− p)

ξµ(1 − p) + ηµ + ηξ

In this case,

N∗ = K +
ηK

ξ(1 − p)
+

ηK

µ(1− p)

If (1 − p)µ = Kη then the solution will depend on the
initial values ofUser1(0), User2(0) andUser3(0), unless,

Nξη

ξη + µη + µξ
≤ 1

and,
Nξµ

ξµ + Kηµ + Kηξ
≤ K

In which caseLi is given by

L1 =
Nµη

ξη + µη + µξ

L2 =
Nξη

ξη + µη + µξ

L3 =
N(1− p)µξ

ξη + µη + µξ

Figures 3 and 4 show the average queue lengths at the
processor and the disk array for various values ofp, where
the processor is the bottleneck (Figure 3) and where the disk
array is the bottleneck (Figure 4). In both cases results are
shown as calculated by the ODE method in this paper and the
mean value analysis method from [16].

It can be seen that whenp is relatively large, the approx-
imation works well (except aroundN∗). Whereas whenp is
smaller, particularly whenp is close to0.5, it is much poorer,
and even diverging withN . It might perhaps be surprising that
the ODE and MVA results are not closer whenp = 0.1. After
all, in this scenario, most jobs will visit the disk array and
experience a long delay there. However, even whenp = 0.1
queueing effects still have an effect at the processor and this
causes a difference between the two methods.

Clearly, the accuracy of the ODE approximation of average
queue length is sensitive top. However, as stated earlier,
the asymptotic solution is generally applied across the entire
network, and not at an individual station. Therefore it is
interesting to observe the accuracy of system wide metrics.
Figure 5 shows the average response time for the entire system,
computed as

W =
M
∑

i=1

ViWi

WhereVi is the visit count andmin[V1, . . . , VM] = 1.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N

Lproc(N)

MVA, p=0.8

ODE, p=0.8

MVA, p=0.6

ODE, p=0.6

Fig. 3. Average queue length at processor and disk array varied with
population size (ξ = 10µ = 30, η = 5, K = 3)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N

Ldisk(N)

MVA, p=0.1

ODE, p=0.1

MVA, p=0.4

ODE, p=0.4

Fig. 4. Average queue length at processor and disk array varied with
population size (ξ = 10µ = 30, η = 5, K = 3)

Clearly the system response time is much less sensitive to
the errors in the average number of jobs in each queue than
we might naively expect. Indeed, Figure 5 shows only a very
small divergence between MVA and ODE calculations, even
when p = 0.4 (the worst case in the earlier graphs). The
explanation for this is relatively simple, in that the maximum
error in predicting the queue lengths is caused when the service
capacity at each queueing station are relatively similar. Hence,
when computing the average response time, we replace a delay
at one station with a very similar delay at the other. As such,
the errors, to an extent, disappear when aggregated across the

54Using ODEs from PEPA models to derive asymptotic solutions for a class of closed queueing networks

0

1

2

3

4

5

6

7

8

9

1 5 9 13 17 21 25 29 33 37 41 45 49

N

W

MVA, p=0.4

ODE, p=0.4

MVA, p=0.6

ODE, p=0.6

MVA, p=0.8

ODE, p=0.8

Fig. 5. Average system response time varied with populationsize (ξ =
10µ = 30, η = 5, K = 3)

whole network in this way.

VI. CONCLUSIONS AND FURTHER WORK

It has been demonstrated that the fluid approximation for
a class of PEPA models coincides with the well known
asymptotic approximation for a corresponding class of closed
queueing network. This result is potentially useful as an alter-
native means for characterising models of queueing networks
specified using PEPA, particularly when the model specified
is not obviously a queueing model. This is the first class of
fluid PEPA model for which there is an explicit expression for
where the fluid solution is least accurate with respect to the
exact solution of the stochastic model. The derivation of ODEs
used in this paper is based on the work of Hillston [11] and is
incorporated into the PEPA Eclipse Plug-in [18], facilitating
easy numerical solution.

The result in this paper is limited to a class of cyclic
queueing model where each station can perform just one
action type. However, the asymptotic approximation applies
to a much wider class of model. Thus it should be possible to
extend this result to consider PEPA models with multiple com-
peting action types at eachJobi derivative, each occurring at
different rates but with the overall rate capped by aQStationj

component. In addition, the asymptotic result holds for general
service distributions, suggesting that the applicabilityof the
fluid approximation in PEPA potentially extends beyond its
conventional Markovian semantics. These investigations are
left as ongoing work.

The result here is also limited to the case where there is
a single bottleneck, unless the population is small enough
that Li ≤ Ki ∀i. It is clearly possible to easily compute the
average queue length for systems where there is more than
one bottleneck, however it is not possible to find a unique

solution directly from the ODEs, which is the aim of this
paper. Furthermore, the approximation is shown to be accurate
only when there are significant queueing effects at one station
only. This gives some further insight as to the kind of model
where ODE analysis is (in)appropriate.

ACKNOWLEDGEMENTS

The author is indebted to A. Clark, A. Duguid, S. Gilmore
and M. Tribastone of the University of Edinburgh for invalu-
able comments on earlier work which contributed to this paper,
in particular for clarifying aspects of the PEPA Eclipse Plug-
in and the apparent rate. The example of the Key Distribution
Centre is based on earlier work by Zhao and Thomas [19].

REFERENCES

[1] J. Bradley, S. Gilmore and N. Thomas, Performance analysis of Stochas-
tic Process Algebra models using Stochastic Simulation, in: Proceedings
of 20th IEEE International Parallel and Distributed Processing Sympo-
sium, IEEE Computer Society, 2006.

[2] J. Bradley, A ticking clock: Performance analysis of a Circadian rhythm
with stochastic process algebra, in: C. Juiz and N. Thomas (eds.),Com-
puter Performance Evaluation: 5th European Performance Engineering
Workshop, LNCS 5261, Springer Verlag, 2008.

[3] A. Clark, A. Duguid, S. Gilmore and M. Tribastone, Partial evaluation
of PEPA models for fluid-flow analysis, in:Computer Performance En-
gineering: Proceedings of the 5th European Workshop on Performance
Engineering (EPEW), LNCS 5261, Springer-Verlag, 2008.

[4] G. Clark and S. Gilmore and J. Hillston and N. Thomas,Experiences
with the PEPA Performance Modelling Tools, IEE Proceedings - Soft-
ware, pp. 11-19, 146(1), 1999.

[5] A. Duguid, Coping with the Parallelism of BitTorrent: Conversion of
PEPA to ODEs in dealing with State Space Explosion. in: E. Asarin
and P. Bouyer (eds.),Formal Modeling and Analysis of Timed Systems,
LNCS 4202, Springer-Verlag, 2006.

[6] B. Haverkort, Performance of Computer Communication Systems: A
model Based Approach, Wiley, 1998.

[7] Richard Hayden, Addressing the state space explosion problem for
PEPA models through fluid-flow approximation, Undergraduate Project
Dissertation, Imperial College London, 2007.

[8] R. Hayden and J. Bradley, Fluid-flow solutions in PEPA to the state
space explosion problem, ValueTools 2008.

[9] J. Hillston, A Compositional Approach to Performance Modelling,
Cambridge University Press, 1996.

[10] J. Hillston, Exploiting Structure in Solution: Decomposing Composi-
tional Models, in: E. Brinksmaet al, Lectures on Formal Methods and
Performance Analysis, LNCS 2090, Springer-Verlag, 2003.

[11] J. Hillston, Fluid flow approximation of PEPA models, in: Proceedings
of QEST’05, pp. 33-43, IEEE Computer Society, 2005.

[12] I. Mitrani, Probabilistic Modelling, Cambridge University Press, 1998.
[13] E. Lazowska, J. Zahorjan, S. Graham and K. Sevcik,Quantitative System

Performance, Prentice-Hall, 1984.
[14] M. Reiser and S. Lavenberg, Mean value analysis of closed multichain

queueing networks,JACM, 22(4), pp. 313-322, 1980.
[15] W. Stallings,Cryptography and Network Security: Principles and Prac-

tice, Prentice Hall, 1999.
[16] N. Thomas and Y. Zhao, Mean value analysis for a class of PEPA

models, in: Proceedings of 6th European Performance Engineering
Workshop, LNCS 5652, Springer-Verlag, 2009.

[17] N. Thomas and Y. Zhao, Fluid flow analysis of a model of a secure
key distribution centre, in:Proceedings 24th Annual UK Performance
Engineering Workshop, Imperial College London, 2008.

[18] M. Tribastone, The PEPA plug-in project, in:Proceedings of 4th
International Conference on the Quantitative Evaluation of Systems
(QEST), pp. 53-54, IEEE Computer Society, 2007.

[19] Y. Zhao and N. Thomas, Approximate solution of a PEPA model of a key
distribution centre, in:Performance Evaluation - Metrics, Models and
Benchmarks: SPEC International Performance Evaluation Workshop,
pp. 44-57, LNCS 5119, Springer-Verlag, 2008.

Nigel Thomas 55

Response-time Profiles for PEPA models

compiled to ODEs

Allan Clark∗

Abstract

This paper reports on a new method for calculating response-time pro-
files from PEPA models. This method is particularly suitable for models
which are too large for the underlying continuous-time Markov chain to
be computed and are thus translated into a system of ordinary differential
equations. A response-time profile examines the probability that a partic-
ular component receives a corresponding ‘response’ a given time after it
made a ‘request’. Any two source and target activities will work provided
that both are initiated or observed by the same component kind. More
general passage-time profiles analysing the probability of moving from any
set of source states to any set of target states are not considered here.

This is a draft of a more complete paper to follow.

1 Introduction

Stochastic process algebras are used to build models describing real-world sys-
tems. These models are then analysed giving performance results which we
hope are applicable to the real-world system. The real-world system may not
yet exist or we may be considering changing the real-world system or its envi-
ronment may chnge outside of our control. Therefore we are using modelling to
predict the performance of a combination of system and environment without
the cost of deploying a real-world test, which may not even by feasible and is
likely prohibitively expensive.

Such models whether described in a process algebra such as PEPA[1] or a
graphical notation such as Petri Nets are often translated into a continuous-
time Markov chain (CTMC). However this approach to evaluating the model
suffers from the well-known problem of state-space explosion. As we increase the
populations of the components involved in the model — for example increasing
the number of user or client components — the size of the resulting state-space
grows exponentially. Even utilising techniques to dampen the effect of state-
space explosion, such as aggregation[2, 3], this greatly limits the applicability of
this approach to analysing a model, to the extent that in recent years modellers
have often turned to other techniques to analyse a model which do not require
the generation of the entire state-space.

In the world of PEPA the break through for this style of analysis was Jane
Hillston’s 2005 paper[4] which describes the automatic translation of a PEPA
model into a set of coupled ordinary differential equations (ODEs). The number

∗LFCS, University of Edinburgh, a.d.clark@ed.ac.uk

1

57

of equations produced from the translation depends on the number of distinct
component states and not the populations of the component types. This means
that we are able to analyse models that would result in state-space sizes of the or-
der of 101000 and beyond. Since then, Stochastic Simulation Algorithm(SSA)[5]
has also been used[6] to analyse large-scale models.

The advantage of using such techniques is clear, models which were previ-
ously infeasible to analyse (using CTMCs) now fall within the realm of models
appropriate for analysis via description in PEPA. The disadvantage is the loss of
the vast bank of knowledge of analysis techniques for continuous-time Markov
chains. One kind of analysis which can be achieved in various ways includ-
ing uniformisation[7, 8, 9] (also known as randomisation), is the extraction of
passage-time quantiles. This allows the calculation of the probability of moving
from one set of source states to another set of target states at or within a given
time after a source state is entered. We call this a response-time profile when
measuring the probability of completing a passage between two events observ-
able by a single component. This is often a single component actively initiating
a request activity and then waiting to passively or actively cooperate in a re-
sponse activity. Although we call this a response-time profile the initiating and
completing activities can conceptually have nothing to do with a request and
response, however for the remainder of this paper we will refer to them as re-
quest and response activities. A response-time profile is a more detailed report
of the responsiveness of a system than an average response-time.

For large-scale systems which cannot be compiled to a CTMC we have been
limited to the computation of average response-times. Simulation of the derived
system of ODEs is used to predict the evolution of the population of each compo-
nent type over time within the system. Where this converges to an unchanging
system in which the population of each component type remains the same we
can classify this as the steady-state of the system. Using this steady-state and
an application of Little’s Law [10] we can extract average response-times[11].
The main contribution of this paper is the generalisation of this technique into
one for obtaining a full response-time profile computing the probability of a
component observing the completion of a response at a given time after the
initiation of the request.

2 Response-time Profiles

In this section we detail how to obtain a complete response-time profile from a
PEPA model which we compile into a set of ODEs. We build upon the general
idea originally proposed by Bradley et al in [12]. We show that this will create
an incorrect response-time profile for most models and how we can rectify this.

2.1 Absorbing Probes

The essential idea is to ‘seed’ a model in which all of the clients are in their
single ‘source’ state. Whereby ‘seed’ means to perform a transient analysis
beginning with a specified set of component populations. The source state is
the start of the response-passage for which we are interested in computing the
response-time profile. This is a state to which the client component transitions
to when performing the initiating request action. For the time being we are

58 Response-time Profiles for PEPA models compiled to ODEs

((α, λ).P) B(U) H =

 (α, λ).Stop : P ∈ H
(α, λ).(P B(U∪{P}) H) : P 6∈ H,P 6∈ U
(α, λ).P : P 6∈ H,P ∈ U

(P + Q) B(U) H = (P B(U) H) + (Q B(U) H)
(P\L) B(U) H = (P B(U) H)\L
(P BC

L
Q) B(U) H = (P B(U) H) BC

L
(Q B(U) H)

Figure 1: The BU operator is defined to convert the component states in the
set H into absorbing states. The component states in the set U are those which
have already been visited.

restricting ourselves to models in which there is only one source state for each
client component.

Having set the initial population of the model such that all clients are in the
source state we then obtain a time-series analysis of the model until all clients
have completed one response-passage, that is until all of them have performed
a response action. However the problem with this approach is that the clients
which have completed their response-passage will, after some delay, re-enter
the source state and subsequently states along the response-passage. Therefore
there is no way to tell how many have completed at least one response-passage.
In their paper cited above, Bradley et al solve this problem by making all the
client processes absorbing upon completion of a passage. This is done using an
absorbing operator shown in Figure 1.

An alternative to defining a new operator over PEPA models is to alter
the way in which the passage specification probe is translated. A stochastic
probe[13], is a sequential PEPA component which is attached to some portion of
the model in order to make observations on that portion of the model simpler.
The probe component never initiates any actions but instead only observes,
through passive cooperation, the activities performed by the portion of the
model to which it is attached. Probe components can be specified in a succinct
language and translated into sequential PEPA components automatically.

Generally a stochastic probe specification is translated into a cyclic sequen-
tial PEPA component. Instead it is possible to translate the probe specification
in to a deadlocking component, which upon observing the target activity moves
into a state from which there are no outward transitions. In addition we must be
careful that the alphabet of the probe — that is the set of actions observed by
the probe — is the same as the alphabet of the client component, thus ensuring
that the client cannot freely perform an action without the probe cooperating.
In this way we ensure that once the probe is in the absorbing state and can-
not perform/observe/cooperate any action then the client component is also
blocked.

Note that this is a departure from the usual probe usage which must certify
that the addition of the probe does not alter the behaviour of the model, however
since altering the model is exactly what we wish to achieve here that is to be
expected. The following is an example model of a web commerce site and a
translated probe specification which measures from a client’s first browse until
their eventual getConfirm which concludes their session.

Allan Clark 59

User
def= (browse, rbrowse).Browsing
+ (buy, rbuy).Buying

Browsing
def= (getPage, rgetPage).User

Buying
def= (getConfirm, rgetConfirm).User

Server
def= (getPage, rsendPage).Server
+ (getConfirm, rsendConfirm).Server

(Server[M]) BC
L

(User[N])
where L = {getPage, getConfirm}

Probe
def= (browse,>).Running
+ (getConfirm,>).P robe
+ (buy,>).P robe
+ (getPage,>).P robe

Running
def= (getConfirm,>).Done
+ (browse,>).Running
+ (buy,>).Running
+ (getPage,>).Running

Done
def= Stop

This component is attached to the user component and the cooperation
(User BC

∗
Probe) is partially evaluated to the following PEPA component which

can then be multiplied via the array operator and used in our example model:

ProbeUser
def= (browse, rbrowse).RunningBrowsing
+ (buy, rbuy).P robeBuying

ProbeBuying
def= (getConfirm, rgetConfirm).P robeUser

RunningBrowsing
def= (getPage, rgetPage).RunningUser

RunningUser
def= (browse, rbrowse).RunningBrowsing
+ (buy, rbuy).RunningBuying

RunningBuying
def= (getConfirm, rgetConfirm).Done

Done
def= Stop

The resulting model is translated into a set of ODEs, the initial population
for the UserProbe component is set such that the entire population is in the
source state RunningBrowsing (such that, in this case, the states ProbeUser
and ProbeBuying are unreachable).

From this the CDF of the response-passage at time t is Done(t)
RunningBrowsing(0)

or rather the number of clients which have completed the passage by time t
divided by the total population of clients. This is shown in Figure 2.

Since we are also able to calculate the average response-time of this same
passage, we can show that the CDF computed in this way is overly optimistic.
Shown on the diagram are two areas, A and B. Area A is the area underneath
the CDF from 0 until the average response-time. Area B is the area above
the CDF from the average response-time to infinity. If the CDF is correctly
calculated then these two areas should be equal, whereas on the diagram clearly
they are not equal.

60 Response-time Profiles for PEPA models compiled to ODEs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
op

ul
at

io
n

Time

Jeremy (et al) Style cdf calculated

Average Response TimeA

B

A != B

cdf

Figure 2: A graph of the CDF for the example response-passage as computed
by the Bradley et al method using ODEs.

2.2 One-Run Probes

The main reason that the above method for calculating the CDF is optimistic is
that once the individual clients have completed their own response-passage they
are in a blocked state and can therefore not re-compete for the same resources.
The later finishing clients therefore have artificially exclusive use of the shared
resources.

A further problem, which may instead cause the computed CDF to be pes-
simistic, is that this method makes no use of when a request action is likely to
occur.

To tackle our first problem we introduce the notion of a one-run probe.
Figure 3 shows a one-run probe together with a typical probe and the above
described absorbing probe. The key point is that once the one-run probe tran-
sitions into its absorbing state it will never transition from it, but because it
allows all of its probe alphabet in cooperation with the user component, the
user component is not blocked from behaving as a non-probed user component.
However because it is in cooperation with a finished probe we can tell how many
such user components there currently are. That is we can tell how many user
components have completed one response-passage even though they are now
currently acting as a non-probed user component and in particular offering up
competition for the shared resources.

Once we have added the one-run probe to our example model and partially
evaluated the resulting cooperation between probe and user components we
obtain the following PEPA model:

Allan Clark 61

Source

Target

source
action

Typical Probe

Source

Target

Absorbing Probe

Source

Target

One-Run Probe

*

* = probe alphabet

Figure 3: A typical probe together with an absorbing and a one-run probe

RunningBrowsing
def= (getPage, rgetPage).RunningUser

RunningUser
def= (browse, rbrowse).RunningBrowsing
+ (buy, rbuy).RunningBuying

RunningBuying
def= (getConfirm, rgetConfirm).RanUser

RanUser
def= (browse, rbrowse).RanBrowsing
+ (buy, rbuy).RanBuying

RanBrowsing
def= (getPage, rgetPage).RanUser

RanBuying
def= (getConfirm, rgetConfirm).RanUser

Server
def= (getPage, rsendPage).Server
+ (getConfirm, rsendConfirm).Server

(Server[M]) BC
L

(RunningBrowsing[N])
where L = {getPage, getConfirm}

In particular we can evaluate at any time how many user components have
already completed the passage by: Done(t) = RanUser(t)+RanBrowsing(t)+
RanBuying(t) and therefore the CDF at time t is: Done(t)

RunningBrowsing(0)

However this would calculate a pessimistic CDF due to the second problem
identified above. The solution is to use the results of steady-state analysis on the
original model to ‘seed’ the probed model. We performed steady-state analysis
on the original model and obtained the values for the populations of the user
states shown in the table on the left of Figure 4.

The table on the right of Figure 4 shows how we ‘seed’ the probed model
in order to achieve our cumulative distribution function. All those user states
which are not the source state have their populations given to the state which
corresponds to a probe which has already finished, in this case the steady-state
population of the User state is given to RanUser and similarly for Buying.
As mentioned before the ProbeUser and ProbeBuying states are never reached

62 Response-time Profiles for PEPA models compiled to ODEs

User 300
Browsing 54
Buying 646

RunningUser 0
RunningBrowsing 54
RunningBuying 0
RanUser 300
RanBrowsing 0
RanBuying 646

Figure 4: The table on the left shows the steady-state populations of the user
component states. The table on the right shows how the derived ODEs are
seeded in order to obtain a CDF for the response-passage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140
 0

 0.2

 0.4

 0.6

 0.8

 1

P
op

ul
at

io
n

Time

Allan Style cdf calculated

Average Response TimeA

B

A == B

allan-ode-cdf
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140
 0

 0.2

 0.4

 0.6

 0.8

 1

P
op

ul
at

io
n

Time

Allan Style cdf calculated

Average Response Time
allan-ode-cdf

hydra-ctmc-cdf
jeremy-ode-cdf

Figure 5:

and hence are given zero population. The source state Browsing has all of its
steady-state population given to the equivalent Browsing state in which the
probe is in the Running state. We can now compute the CDF of our response-
passage by calculating the number of components initially in the source state
which have now finished. This is: Done(t) = (RanUser(0) + RanBuying(0))−
(RanUser(t)+RanBrowsing(t)+RanBuying(t)) and we can compute the CDF
by: Done(t)

RunBrowsing(0)

Using this we obtained our new CDF depicted in the left hand graph of
Figure 5. The right hand graph compares the CDFs computed by our proposed
method ‘allan-ode-cdf’ and the previous method of Bradley et al ‘jeremy-ode-
cdf’ and that computed using a CTMC and a model used to approximate the
true model which space does not permit to show here.

3 Conclusions

This paper has briefly shown how to update our ability to calculate a response-
time profile from a PEPA model whose state space is too large to consider com-
pilation via a CTMC. In addition we have shown how both absorbing probes and
one-run probes may be used to alter the behaviour of a model, this is something
of a first for the stochastic probe framework which has hitherto maintained a
strict protocol that a stochastic probe must not alter the behaviour of the model.

Allan Clark 63

References

[1] Hillston, J.: A Compositional Approach to Performance Modelling. Cam-
bridge University Press (1996)

[2] Ribaudo, M.: On the aggregation techniques in stochastic Petri nets and
stochastic process algebras. In Gilmore, S., Hillston, J., eds.: Proceedings
of the Third International Workshop on Process Algebras and Performance
Modelling, Special Issue of The Computer Journal, 38(7) (1995) 600–611

[3] Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggre-
gating PEPA models. IEEE Transactions on Software Engineering 27(5)
(2001) 449–464

[4] Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings
of the Second International Conference on the Quantitative Evaluation of
Systems, Torino, Italy, IEEE Computer Society Press (2005) 33–43

[5] Gillespie, D.: Exact stochastic simulation of coupled chemical reactions.
Journal of Physical Chemistry 81(25) (1977) 2340–2361

[6] Bradley, J., Gilmore, S.: Stochastic simulation methods applied to a secure
electronic voting model. Electr. Notes Theor. Comput. Sci. 151(3) (2006)
5–25

[7] Grassmann, W.: Transient solutions in Markovian queueing systems. Com-
puters and Operations Research 4 (1977) 47–53

[8] Gross, D., Miller, D.: The randomization technique as a modelling tool and
solution procedure for transient Markov processes. Operations Research 32
(1984) 343–361

[9] Clark, A., Gilmore, S.: Terminating passage-time calculations on uni-
formised Markov chains. In Argent-Katwala, A., Dingle, N.J., Harder, U.,
eds.: Proceedings of the Twenty-Fourth annual UK Performance Engineer-
ing Workshop. (2008) 64–75

[10] Little, J.D.C.: A proof of the queueing formula l = λw. Operations
Research 9 (1961) 380–387

[11] Clark, A., Duguid, A., Gilmore, S., Tribastone, M.: Partial evaluation of
PEPA models for fluid-flow analysis. In Thomas, N., Juiz, C., eds.: Pro-
ceedings of the 5th European Performance Engineering Workshop (EPEW
2008). Volume 5261 of LNCS., Palma de Mallorca, Spain, Springer (2008)
2–16

[12] Bradley, J.T., Hayden, R., Knottenbelt, W.J., Suto, T.: Extracting Fluid
Response times from PEPA models. In: PASTA’08, 7th Workshop on
Process Algebra and Stochastically Timed Activities. (2008) This is a
short version summary of the full paper that appeared at SIPEW 2008
(http://pubs.doc.ic.ac.uk/responsetimes-fluidanalysis).

64 Response-time Profiles for PEPA models compiled to ODEs

[13] Clark, A., Gilmore, S.: State-aware performance analysis with eXtended
Stochastic Probes. In Thomas, N., Juiz, C., eds.: Proceedings of the 5th
European Performance Engineering Workshop (EPEW 2008). Volume 5261
of LNCS., Palma de Mallorca, Spain, Springer (2008) 125–140

Allan Clark 65

Configuring Service-Oriented Systems using
PEPA and AI Planning

Amanda Coles, Andrew Coles Stephen Gilmore
Department of Computer and Information Sciences, School of Informatics,

University of Strathclyde, Glasgow, UK University of Edinburgh, UK

firstname.lastname@cis.strath.ac.uk firstname.lastname@ed.ac.uk

August 14, 2009

Abstract

In this paper, we look at how two hitherto-distinct approaches to system modelling — PEPA and AI Planning — can
be combined to provide configuration decisions for service-oriented systems. By combining the modelling of uncertainty
in PEPA with the fast decision making of planning, we exploit their respective strengths. To illustrate the potential of our
approach, we consider a model of a system for obtaining loan decisions from a broker, for which we produce cost-effective
investment decisions to meet a desired performance target.

1 Introduction
The cost-effective provision of Service-Oriented Systems — ‘systems of systems’ set up to provide a desired service —
presents an interesting challenge to 21st century computing. Considering two facets of the problem, first, there is the
challenge of modelling expected system performance given the performance of system components and network infras-
tructure. Second, there is the issue of choosing the system configuration: the possibility of distributing data processing
on a global scale gives considerable choice over how to compose the service, and as such finding the most cost effective
system configuration to meet a desired performance target is non-trivial. For instance, a cheaper remote service is only
cost-effective if the investment in bandwidth needed to meet the desired performance is reasonable; but at the same time,
investing elsewhere in the system may make investment in bandwidth unnecessary.

In this paper, we explore how two approaches to system modelling can be combined to meet these challenges. For
an accurate performance model, we will use PEPA [4]. For fast decision making, we will use AI Planning [2], working
with an approximate model of system performance. The two systems, combined, form a closed loop: when the model of
performance provided initial PEPA model is unacceptable, planning is used to provide cost-effective investment decisions;
then, an updated PEPA model is built to ascertain whether the performance target has now truly been met.

2 Background: AI Planning
AI Planning is concerned with the task of finding a sequence of actions that, when executed, reach some desired goals. Be-
ginning with planning in its simplest form — propositional planning, without an an explicit notion of time or numbers —
a planning problem can be described by a tuple 〈I,G,A〉, where:

• I is the initial state: a set of propositions that hold true initially (under the closed world assumption that any fact
not in I is initially false);

• G is the goal state: a set of propositions such that G ⊆ Sg for any goal state Sg;

• A is the set of actions, with the aim being to reach a state Sg through applying successive actions from A to I .

Each action a ∈ A can, in turn, be defined by a tuple 〈pre, del, add〉, where:

• pre is the precondition set of a: for a to be applied in a state S, pre ⊆ S;

• del and add are the set of facts deleted (resp. added) upon the application of a.

1

66 Configuring Service-Oriented Systems using PEPA and AI Planning

(:action drive-truck
:parameters (?t - truck ?from ?to - locations)
:precondition (and (at ?t ?from)

(>= (fuel ?t) (/ (distance ?from ?to) (mpg ?t)))
)

:effect
(and (not (at ?t ?from))

(at ?t ?to)
(decrease (fuel-in ?t) (/ (distance ?from ?to) (mpg ?t)))

)
)

Figure 1: Moving a truck

Applying a in a state S then gives a state S′ where:

S′ = (S \ del(A)) ∪ add(A)

More recently [3], planning models written in the Planning Domain Definition Language (PDDL) can include numeric
state values in their specification. An example of an action manipulating numeric values is shown in Figure 1. As can be
seen, for the action to be applied, the truck must be at the designated start location, and hold enough fuel for the journey;
and when the action is applied, the location of the truck is updated, and the amount of fuel in it decreased accordingly.
With models such as these, the task of a modern planner such as COLIN [2] is to find a solution plan that respects this
defined behaviour, along with other capabilities of PDDL, such as modelling time and continuous numeric processes (e.g.
filling a tank at a certain rate).

3 Modelling Service-Oriented Systems in PEPA
We will use PEPA [4] to model a service-oriented system where a customer (CR) requests loans from a broker (BR),
who forwards on the request to a lender (LE), and returns the response to the customer. The customer, broker and lender
are physically distributed and communicate across a network between the customer and the broker (CB) and a network
between the broker and the lender (BL).

The Service-Level Agreement (SLA) for this system is expressed in terms of the response time experienced by the
customer. That is, the delay between the end of the request activity and the end of the response activity. (It does not matter
how long the customer takes to make a request, we are concerned only with how responsive is the service composition
of broker and lender, once the request has come in.) The SLA of the loan service states that 80% of customers receive a
response within 7 seconds. The SLA does not state what percentage of these responses turn down the loan request.

The customer (CE) makes a request and then is ready to receive a loan offer. When this is completed, the customer
thinks about the offer, and the process repeats.

CR
def= (request, r).CRready

CRready
def= (response,>).CRcompleted

CRcompleted
def= (think, t).CR

The network between the customer and the broker is symmetric in the sense that it is reasonable to use only a single rate
parameter rCB to represent transfer from customer to broker in both directions (first for the request, then for the response).

CB
def= (request,>).(transferToBroker, rCB).

(transferFromBroker,>).(response, rCB).CB

The broker (BR) is idle until a loan request comes in. The broker then identifies a suitable lender by consulting a registry
and then forwards the loan request to the lender. (The interaction with the registry is not represented here.) When the
response is received from the lender the broker post-processes it and transfers it back across the network to the customer.

BR
def= (transferToBroker,>).(requestLender, rBR).

(responseLender,>).(transferFromBroker, rBR).BR

The network between the broker and the lender is also symmetric, imposing the same delay when transferring the request
to the lender, as when transferring the response from the lender. Thus the rate rBL is used twice in the definition of this

2

Amanda Coles, Andrew Coles and Stephen Gilmore 67

CR CB BR BL LE

request

transferToBroker

requestLender

transferToLender

transferFromLender

responseLender

transferFromBroker

response

Request/response cycleRequest/response cycle

Figure 2: A UML sequence diagram showing the interactions between the customer (CB), the broker (BL) and the
lender (LE).

component.

BL
def= (requestLender,>).(transferToLender, rBL).

(transferFromLender,>).(responseLender, rBL).BL

The lender (LE) simply functions as a reactive system, being inactive until receiving a request and then giving back the
loan offer.

LE
def= (transferToLender,>).(transferFromLender, rLE).LE

Finally, the complete PEPA model is a composition of these five sequential components, requiring them to cooperate on
their common actions.

(CR BC
L1

(CB BC
L2

(BR BC
L3

(BL BC
L4
LE))))

where
L1 = { request, response }
L2 = { transferToBroker, transferFromBroker }
L3 = { requestLender, responseLender }
L4 = { transferToLender, transferFromLender }

The activity relevant to the SLA is depicted as a UML diagram in Figure 2. The five sequential components of the PEPA
model are represented as swimlanes which proceed down the page. The horizontal lines which cross from one swimlane
to another mark the end of an activity. The height of a thick bar represents the duration of one or more activities. We are
concerned with the height of the bar in the CB swimlane, which represents the seven-activity sequence transferToBro-
ker; requestLender; transferToLender; transferFromLender; responseLender; transferFromBroker; and response. These
activities need to take place (in this order) to complete a request from a customer.

4 Approaching PEPA Models from Planning
As discussed in the previous section, PEPA provides an elegant means whereby service-oriented systems can be formally
defined. Its key strength in this setting lies in the ability to use distributions to model the how long each activity takes,
capturing the uncertainty in the performance of each of the system’s components. In doing so, it is possible to verify
service-level agreements (SLA) specifying a total service time and the percentage of transactions for this must hold. The
weakness of the approach is encountered when the service-level agreement is not met, and hence where investment is
needed to reduce one or more activities’ durations. There is no direct way to consider these possibilities: the modeller is
left with the task of performing sensitivity analyses on the system to deduce where investment should be applied, whilst
bearing in mind the costs of doing so.

The strengths and weaknesses of planning models contrast strongly with that of PEPA in this domain. As discussed
in Section 2, a PDDL model can capture a sequence of activity, but unlike PEPA, in classical planning the outcome of the

3

68 Configuring Service-Oriented Systems using PEPA and AI Planning

(:action CB1 (:action BR1
:parameters () :parameters ()
:precondition :precondition

(ready) (ready_for br1)
:effect (and :effect (and

(not (ready)) (not (ready_for br1)))
(ready_for br1) (ready_for bl1)
(increase (dur) 0.3) (increase (dur) 0.9)

))
))

Figure 3: CB1 and BR1 Actions from the Basic PDDL model

action is deterministic: moving the truck uses precisely the calculated amount of fuel, and were a temporal model used,
it would take precisely the calculated amount of time. Where planning has its strengths is in considering the implications
of decisions and how well they contribute towards the goal. Actions can be used to encode the options available and their
costs, and the planner can then consider these when planning to reach the goals. For instance, in the case of a logistics
problem, the costs would correspond to refueling the trucks and employing drivers.

From these comparisons, what we seek is useful middle ground combining the strengths of these two approaches.
Where a PEPA model falls short of the SLA, investment decisions are needed — a strength of planning. But, to make
useful investment decisions, the planner needs to consider uncertainty — a strength of PEPA models. Here, we shall
proceed to answer the following: how can we give a planner enough information about the uncertainty in activities’
durations to allow it to make cost-effective service investment decisions, leading to a modified PEPA model which is then
feasible?

4.1 A Basic PDDL System Model
First, we shall construct a basic PDDL model corresponding to the steps of the GetLoan system (Figure 2). Our initial
state declares that the system is idle (the fact ready holds), and the goals are that the second CB activity has finished,
and the total time taken is ≤ 6 seconds. For each activity, a corresponding action is created in the planning problem; for
activities in two fragments (e.g. CB) we add two actions, CB1 and CB2. Two example actions are shown in Figure 3.
First, considering numeric effects, each action increases the duration of the activity sequence by the mean time taken
to complete the activity. Second, considering the propositional preconditions and effects, the first of these adds a fact
required as a precondition for the second. Similar effect–precondition constructs exist for the remaining actions, until
CB2 adds done, as required by the goal state.

4.2 Modelling Uncertainty and Choice
The PDDL model, as described, only considers the mean time taken to complete each activity, taking the total time to
complete the sequence as the sum of these. As there is no model of uncertainty, the planner has no basis on which to
determine the distribution of possible outcome durations, and hence no means to determine whether the SLA will hold
under the exponential distributions used as the basis for the original PEPA model. To address this, we shall approximate
these distributions within the PDDL model, allowing the planner to estimate the attainable SLA.

To achieve this, we make two changes to our model. First, each action has a number of duration outcomes, associated
with likelihoods, rather than a single duration effect. For durations samples d0, .., dn taken from the time distribution
for activity a, the corresponding likelihood pi ∈ p0, .., pn will be taken as (CDF (di, λa) − CDF (di−1, λa)) (defining
CDF (d−1, λa) = 0). Second, each action applies its outcomes onto each of the previous possible outcomes. In doing so,
once the plan contains all the necessary activities, by summing the likelihood of all outcomes within the target deadline
(e.g. 6 seconds), we can see if the target likelihood (e.g. 90%) has been met.

Before illustrating this with an example, we make one final change to the model to reflect choice over the investment
decisions available to improve the system’s performance. For each activity, a range of rates are available, with associated
costs. By planning to minimising the sum of these costs, whilst also meeting the SLA, the planner can answer questions of
the form ‘what is the minimum investment needed to meet this SLA?’. Figure 4 shows an example of the finished action
model. The cost effect is fairly intuitive — increase the total cost by the cost of setting BR1 to follow the rate chosen.
Also note the effect (ratefor br2 ?r), which records that this rate must later be used for BR2.

The outcome effects are slightly more involved. At a superficial level, whenever an action is applied, we update
the space of possible outcome durations and likelihoods for the plan so far (as a whole) to reflect the space of possible
outcomes from the action. In more detail, the rationale behind the PDDL nested forall effects are as follows:

4

Amanda Coles, Andrew Coles and Stephen Gilmore 69

(:action BR1
:parameters (?r - rate)
:precondition

(ready_for br1)
:effect (and

(not (ready_for br1))
(ready_for bl1)
(increase (cost) (cost_br1 ?r))
(ratefor_br2 ?r)
(forall (?sa - sample_cb1)

(forall (?sb - sample_br1) (and
(assign (outcome_d_br1 ?sa ?sb) (+ (sample_d_br1 ?r ?sb) (outcome_d_cb1 ?sa)))
(assign (outcome_p_br1 ?sa ?sb) (* (sample_p_br1 ?r ?sb) (outcome_p_cb1 ?sa)))

))
)

)
)

Figure 4: CB1 from the Enhanced PDDL model

1. The earlier action for CB1 defined a number of possible outcomes, the set sample cb1. The duration of each
of these (i.e. each ?sa - sample cb1) is denoted (outcome d cb1 ?sa), and its associated likelihood is
(outcome p cb1 ?sa).

2. The actionBR1 also has a number of possible outcomes, the set sample br1. The rate parameter defines the space
of outcome durations and likelihoods, so for each ?sb - sample br1 there is an outcome (sample d br1 ?sb)

with likelihood (sample p br1 ?sb).

3. The number of possible outcomes from CB1 then BR1 is then the cartesian product of the outcome sets, summing
the durations and multiplying the likelihoods.

5 Test Case
As a proof-of-concept for the use of planning to make cost-effective investment decisions to meet a desired SLA, we shall
refer to the GetLoan system (Figure 2). The scenario is as follows:

• The existing system is (easily) capable of meeting an SLA of 7 seconds 80% of the time.

• The goal is to meet an SLA of 6 seconds 90% of the time, requiring investment.

• The current mean delays for each of CB,BR,BL and LE are 0.3, 0.9, 0.3 and 1.2 seconds, respectively;

• The delay for each of these can be reduced by 20%, with respective costs of £10k, £15k, £8k, and £18k.

We proceed to make a PDDL model of this, following Section 4.2. We take 10 samples from each activity’s time
distribution using the baseline delays, adding these to the model with cost 0. Then, reducing the delays by 20%, we take
a further set of samples and add these as alternatives, incurring the relevant cost. The plan produced is as follows, with a
total investment cost of £23k:

1. CB1, baseline rate

2. BR1, improved rate

3. BL1, improved rate

4. LE, baseline rate

5. BL2, improved rate

6. BR2, improved rate

7. CB2, baseline rate

5

70 Configuring Service-Oriented Systems using PEPA and AI Planning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

P
ro

b
a

b
ili

ty
 o

f
c
o

m
p

le
ti
o

n

Time

fast, planner
fast, markovian

slow, markovian

Figure 5: CDFs of the Performance of the GetLoan System

The time taken to find the plan was two seconds, and is known to be cost-optimal, with respect to the planning model:
if we add an additional goal that cost is less than 23k, no solution plan can be found.

Bearing in mind that the outcome distribution used by the planner is an approximation, we can then update the
original PEPA model to validate whether the investment decisions made by the planner are able to meet the new SLA. We
performed a Markovian response-time analysis of the PEPA model using the ipclib [1] PEPA library, and the results for
the original and updated models are shown in Figure 5 (the ‘slow, markovian’ and ‘fast, markovian lines’, respectively).
The 6 second lies at the 90.544%th percentile of the updated CDF, indicating the investment has reached the desired SLA.
Also shown on the graph is the estimated CDF produced by the planner for the outcomes of the above plan — as can be
seen, it is pessimistic, but within a few percentage points of the true CDF in the upper quartile.

6 Conclusions
In this paper we have shown how PEPA modelling and Planning can be usefully combined to provide decision-support
for service-oriented system configuration. By using a PEPA model to accurately reflect the uncertainty in the time taken
to complete each system activity, and a planner working with an approximate sampled model, the result is a CPU-time-
efficient system for suggesting and validating system investment decisions. In future work, our aim is to extend the range
of system models for which our approach can be used by extending the planner to support more flexible PEPA models
with disjunctive activity pathways, as well as larger models with greater numbers of possible activity configurations.

Acknowledgements
Amanda Coles is supported by the EPSRC project EP/G023360/1, “Modelling Planning Problems”. Andrew Coles is
supported by SICSA, the Scottish Informatics and Computer Science Alliance. Stephen Gilmore is supported by the
EU FET-IST Global Computing 2 project SENSORIA (“Software Engineering for Service-Oriented Overlay Computers”
(IST-3-016004-IP-09)).

References
[1] Allan Clark. The ipclib PEPA Library. In Mor Harchol-Balter, Marta Kwiatkowska, and Miklos Telek, editors,

Proceedings of the 4th International Conference on the Quantitative Evaluation of SysTems (QEST), pages 55–56.
IEEE, September 2007.

[2] A. J. Coles, A. I. Coles, M. Fox, and D. Long. Temporal planning in domains with linear processes. In Twenty-First
International Joint Conference on Artificial Intelligence (IJCAI), July 2009.

[3] M. Fox and D. Long. PDDL2.1: An Extension of PDDL for Expressing Temporal Planning Domains. J. Art. Int.
Research, 20:61–124, 2003.

[4] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.

6

Amanda Coles, Andrew Coles and Stephen Gilmore 71

Abstraction and Model Checking in the Eclipse PEPA Plug-In

Michael J. A. Smith∗

M.J.A.Smith@sms.ed.ac.uk

Laboratory for Foundations of Computer Science
University of Edinburgh

Edinburgh, United Kingdom

Abstract

The stochastic process algebra PEPA is a widely used language for performance modelling, and a large
part of its success is due to the rich tool support that is available. As a compositional Markovian formalism,
however, it suffers from the state space explosion problem, where even small models can lead to very large
Markov chains. One way of analysing such models is to use abstraction — constructing a smaller model
that bounds the properties of the original.

We present a new tool for abstracting and model checking PEPA models, which is an extension of the
Eclipse plug-in for PEPA. This extends the current tool with two additional views. The abstraction view
is a graphical interface for labelling and aggregating states of PEPA components. The model checking
view allows CSL properties to be specified and checked. Internally, we use the techniques of abstract
Markov chains and stochastic bounds to analyse transient and steady state properties respectively. We
have extended both techniques so that they can be applied compositionally to PEPA.

1 Introduction

In the distributed world of today, performance has a vital role in the construction of robust, reliable and
scalable computer systems. A powerful technique for reasoning about the performance of these systems is
to use mathematical modelling — in particular, working with high-level compositional languages, such as
stochastic process algebras. One such widely used language is the Performance Evaluation Process Algebra
(PEPA) [10], and a significant part of its success is due to the many tools that are available [5, 9, 15,20].

The PEPA language has two primary semantics — a Markovian semantics, which maps a model to a
continuous time Markov chain (CTMC) [10], and an ordinary differential equation (ODE) semantics [11].
Both semantics, as well as stochastic simulation, are implemented in the PEPA plug-in tool [20], which is
built on the Eclipse platform [1]. This provides an interface for editing PEPA models, and performing both
steady state and time series analysis. An Integrated Development Environment (IDE) such as Eclipse has
the advantage of providing a standardised interface, with which users are already familiar, and removing
much of the burden of user interface development from the tool developer.

Often, when we analyse a model, we are interested in a particular property that we express in an ap-
propriate logic — for example, the Continuous Stochastic Logic (CSL) [3, 4]. There are a number of tools
available for model checking Markovian models — for example, MRMC [13] and PRISM [15] — but currently
PRISM is the only model checker that accepts PEPA as a direct input language. Whilst PRISM is a powerful
tool, it has two disadvantages for the PEPA modeller — it accepts only a subset of the PEPA language1,
and it is not integrated with the PEPA plug-in tool. One of the contributions of this paper is to present
integrated tool support for CSL model checking of the full PEPA language.

The main problem faced by compositional formalisms like PEPA, is that even a relatively small model
can lead to a CTMC that is much too large to analyse. This state space explosion problem can be avoided if
we are only interested in the average behaviour of the system — namely, the average number of components
in a given state at a particular time — in which case we can use the ODE semantics of PEPA. However, if

∗This work was funded by a Microsoft Research European Scholarship
1PRISM does not implement the minimum semantics of active-active synchronisation, and instead multiplies the rates.

1

73

we want to reason about all possible runs of the model, and not just the average case, we need to look at its
Markovian semantics. And since the problem of state space explosion is unavoidable, we have no choice but
to look for ways of dealing with it.

The basic principle for analysing a large model seems deceptively simple — we just need to make it
smaller! This process of abstraction is more difficult than it sounds, because we need to preserve information
about the properties we are interested in. There a few different ways for us to do this, but the approach
we take in this paper is to aggregate states with similar behaviour. Since, most of the time, this throws
away some of the information in the original model, we look at obtaining bounds on properties of the model.
For example, if a system has a probability 0.001 that it fails within the first ten minutes of operation, the
abstracted model might tell us that the probability lies in the interval [0, 0.002]. The important thing is that
the bound is accurate, in that the actual probability always lies within the interval we obtain.

Whilst some abstractions can give very tight bounds on the probability of satisfying a property, others
can give less useful information. Indeed, in the worst case, we could “discover” that the probability lies in
the interval [0, 1]. Hence the key to obtaining useful information is the choice of abstraction — in other
words, how do we select which states to combine? As there is currently no way, in general, to automatically
decide this, it is important that we can easily try different abstractions. This leads to the topic of this
paper — providing an interface for quickly and easily specifying abstractions of PEPA models, and for
checking properties of the abstracted models.

There are a number of techniques for producing bounded abstractions of a CTMC, and we make use of
two of them — abstract Markov chains [7,13], and stochastic bounds [8,19]. The former can be used to bound
transient properties, and the latter for various monotone properties such as the steady state distribution.
Both of these techniques were originally specified and used at the level of Markov chains, but we have
extended them so that they can be applied compositionally to PEPA models [18]. This means that we can
construct bounds for models whose underlying CTMC is too large to represent (let alone analyse), since we
maintain its compositional structure when building the abstract model. It also means that the modeller can
identify which states to aggregate in a more natural way, using the same component-level view as in the
original model.

In this paper, we present a new extension to the Eclipse PEPA plug-in, which provides a graphical
interface for abstracting PEPA models, and a model checker for properties in the Continuous Stochastic
Logic (CSL) [3,4]. The tool can be downloaded from http://www.dcs.ed.ac.uk/pepa/tools/plugin, and
extends the PEPA plug-in with the following two views:

1. The Abstraction View is a graphical interface that shows the state space of each sequential component
in a PEPA model. It provides a facility for labelling states (so that they can be referred to in CSL
properties), and for specifying which states to aggregate.

2. The Model Checking View is an interface for constructing, editing, and model checking CSL prop-
erties. The property editor provides a simple way to construct CSL formulae, by referencing states
that are labelled in the abstraction view. Only valid CSL formulae can be entered.

In this paper, we will begin by describing the PEPA language, along with a small example, in Section 2. We
will then describe the abstraction and model checking views in Sections 3 and 4 respectively. We give a brief
description of the theory behind the approach, and some implementation details in Section 5. Finally, we
consider a larger example in Section 6, to illustrate the capabilities of the tool, before concluding in Section 7.

2 The PEPA Language

The Performance Evaluation Process Algebra (PEPA) [10] is a compositional formalism with Markovian
semantics. In PEPA, a system is a set of concurrent components, which are capable of performing activities.
An activity a ∈ Act is a pair (a, r), where a ∈ A is its action type, and r ∈ R≥0 ∪ {⊤} is the rate of the
activity. This rate parameterises an exponential distribution, and if unspecified (denoted ⊤), the activity is
said to be passive. In this case, another component must actively drive the rate of the action. PEPA terms

2

74 Abstraction and Model Checking in the Eclipse PEPA Plug-In

P14 = (reg14, r).P14 + (move15,m).P15

P15 = (reg15, r).P15 + (move14,m).P14 + (move16,m).P16

P16 = (reg16, r).P16 + (move15,m).P15

S14 = (reg14,⊤).(rep14, s).S14

S15 = (reg15,⊤).(rep15, s).S15

S16 = (reg16,⊤).(rep16, s).S16

DB14 = (rep14,⊤).DB14 + (rep15,⊤).DB15 + (rep16,⊤).DB16

DB15 = (rep14,⊤).DB14 + (rep15,⊤).DB15 + (rep16,⊤).DB16

DB16 = (rep14,⊤).DB14 + (rep15,⊤).DB15 + (rep16,⊤).DB16

P14 ⊲⊳
{reg14,reg15,reg16}

(S14 ‖ S15 ‖ S16) ⊲⊳
{rep14,rep15,rep16}

DB14

Figure 1: A PEPA model of an active badge system

have the following syntax:
C := (a, r).C | C1 + C2 | C1 ⊲⊳

L
C2 | C/L | A

We briefly describe these combinators as follows:

• Prefix ((a, r).C): the component can carry out an activity of type a at rate r to become component C.

• Choice (C1 +C2): the system may behave either as component C1 or C2. The current activities of both
components are enabled, and the first to complete determines which component proceeds. The other
component is discarded.

• Cooperation (C1 ⊲⊳
L

C2): the components C1 and C2 synchronise over the cooperation set L. For
activities whose action type is not in L, the two components proceed independently. Otherwise, they
must perform the activity together, at the rate of the slowest component. At most one of the components
may be passive with respect to this action type.

• Hiding (C/L): the component behaves as C, except that activities whose types are in L are hidden,
and appear externally as the unknown type τ .

• Constant (A
def
= C): component C has the name A.

The operational semantics of PEPA defines a labelled multi-transition system, which induces a derivation
graph for a given component. Since the duration of a transition in this graph is given by an exponentially
distributed random variable, this corresponds to a continuous time Markov chain (CTMC).

An example PEPA model with five components is shown in Figure 1. This is a model of an active badge
sensor system, which was first presented in [6]. In the model, a person (component P) moves between three
corridors, labelled 14, 15 and 16, which are arranged linearly. Each corridor i has a sensor Si, which listens
for a registration signal reg i from the person, and informs the database DB. The state of the database
effectively records where the person was last seen. The model has three rate parameters — r is the rate at
which the badge sends a signal to the sensors, m is the rate of moving between corridors, and s is the rate
at which the sensor updates the database.

There are a number of interesting questions we might ask of the model. For example, what proportion of
the time does the person spend in each of the corridors? Or, what is the probability that the database can
move directly from state DB14 to state DB16, missing the fact that the person must have passed through
corridor 15? Since this particular example has only 72 states, we can analyse it directly without need for
abstraction. We will, however, use it as a running example whilst describing the tool in the following two
sections. In Section 6 we will look at a larger example, which better illustrates the power of abstraction.

3

Michael Smith 75

Figure 2: The PEPA Eclipse Plug-In

3 Specifying State-Based Abstractions

In order to construct and check CSL properties of a PEPA model, we need some way of referring to states of
the model. One way of doing this would be use the names of the sequential component states in the model,
but this could lead to very long and cumbersome names — especially if we refer to a large set of states.
Ideally, we would prefer to use a single, meaningful name. Our solution is to provide a graphical interface
for labelling sets of states.

An overall view of the PEPA plug-in is shown in Figure 2. Here, the active badge model of Figure 1 is
open in the editor, and the abstraction view is in use. The majority of the abstraction view is taken up by
a graphical representation of the sequential components in the system equation of the model. In this case,
there are five components, and each corresponds to a tab in the view. Currently on display is the database
component DB .

On the right of the abstraction view is a table showing the atomic properties for the model. Right clicking
on this table brings up a menu, from which we can define a new property, or rename or delete an existing
one. When we create a new property, the currently selected states in the graph will initially satisfy it, and
the other states will not. We can change which properties a state satisfies by right clicking on the state —
this allows us to select or deselect the atomic properties, as illustrated in the figure.

An additional feature of the property table is that clicking on a property will highlight all the states that
satisfy it. Clicking on a state in the graph will shade the properties that it satisfies in green, and those it does
not in red. This allows us to quickly see which states satisfy which properties. It is important to remember
that all atomic properties are defined compositionally. A state in the system satisfies an atomic property if
and only if its state in each component does. In Figure 2, the property “Left Corridor” is satisfied by DB14,
but not by DB15 and DB16. Since we do not constrain the property for any of the other components, it is
satisfied by all states of the system that have the database in state DB14. An example would be the state
P14 ‖ S14 ‖ S15 ‖ S16 ‖ DB14.

The second function of the abstraction view is, as its name suggests, to specify an abstraction — namely,
which states to aggregate. Figure 3 shows a close-up of the abstraction view, this time for the component P .

4

76 Abstraction and Model Checking in the Eclipse PEPA Plug-In

Figure 3: The abstraction interface

In this case, we have selected to show both the actions and the rates on the transitions, but since this leads
to a more cluttered graph these options are not selected by default.

Aggregating states in a sequential component is simply a matter of selecting the states, and clicking the
Aggregate button. They can be separated again by clicking Disaggregate. Once a set of states have been
aggregated, we can only select them as a group — clicking on any one of the states will select them all. Note
that the aggregation of states is independent of both the labelling of atomic properties2 and the definition of
CSL properties in the model checking view. This means that we can quickly try out different abstractions —
the only thing we need to do is to run the model checker each time.

4 Model Checking Abstract PEPA Models

To describe properties of a PEPA model, we need a logic for expressing them. The most widely used logic for
model checking CTMCs is the Continuous Stochastic Logic (CSL) [3, 4]. CSL is a branching-time temporal
logic, which allows us to talk about the probability of a state satisfying some temporal property, and the time
interval in which a property must hold.

Formulae in CSL consist of state formulae Φ, and path formulae ϕ. The former are properties of individual
states in the Markov chain — for example, that the steady state probability is greater than a certain value.
The latter are properties that hold of paths (sequences of states) through the chain — for example, that a
state property holds until some condition is met.

State formulae Φ are defined as follows, for E ∈ {≤,≥}, p ∈ [0, 1] and atomic propositions a:

Φ ::= tt | a | Φ ∧Φ | ¬Φ | SEp(Φ) | PEp(ϕ)

In addition to atomic propositions and the standard logical connectives, there are two state formulae of
interest:

• A steady state measure SEp(Φ) is satisfied if the steady state probability of being in the set of states
satisfying Φ is E p.

• A path measure PEp
(ϕ) is satisfied of a state s if the integral of the probability measures of all the

paths from s satisfying ϕ is E p.

A useful extension to the basic CSL syntax, used by the PRISM [15] model checker and by us, allows us to
test the value of a steady state or path measure:

ΦT = S=?(Φ) | P=?(ϕ)

2If we aggregate a set of states when only some of them satisfy a property, the abstract state will have a truth value of ‘?’
(i.e. it ‘maybe’ satisfies the property).

5

Michael Smith 77

Figure 4: The CSL property editor

These are not state formulae in themselves, since they do not evaluate to a truth value, but to the probability
of the property holding of a state. This does not affect the expressivity of CSL, but is convenient for users
of a model checker.

Path formulae ϕ have the following syntax, where I is a non-empty interval over R≥0:

ϕ::=XIΦ | Φ UIΦ

These two operators have the following semantics:

• The next operator, XIΦ, holds of a path if it leads to a state satisfying Φ in one transition, within the
time interval I.

• The until operator, Φ1 U
IΦ2, holds of a path if it reaches a state satisfying Φ2 within the time interval

I, and until then only passes through states that satisfy Φ1.

Classically, for a CTMC, a CSL formula will evaluate to either true or false, or a probability in the case of the
test operators ΦT . In our case, however, we want to model check abstract models, hence the test operators
will evaluate to a probability interval. This describes the best and worst case probability of satisfying the
formula, based on the information available in the abstraction. Since this means that we might not know
whether or not the model satisfies a property, we need to use a three-valued semantics of CSL [13], with
truth values of ⊤, ⊥ and ? (true, false, and maybe).

To illustrate the properties we can express, consider the following formula, for the active badge model
from Figure 1. Let us assume that we used the abstraction view to define the atomic properties Left Corridor
and Right Corridor , meaning that the database is in states DB14 and DB16 respectively:

P=?(Left Corridor U Right Corridor)

This asks the question, “what is the probability that the database will continue to think that the person is in
the leftmost corridor, until it becomes aware that the person is in the rightmost corridor?” We can construct
this formula using the CSL editor, as illustrated in Figure 4.

The aim of the CSL editor is to make it as easy as possible to construct a CSL formula. In particular, it
ensures that we can construct only valid formulae. The buttons on the interface correspond to the various
CSL operators and logic connectives, and are enabled by clicking on the part of the formula we want to edit.
Hence we cannot enter a path formula where a state formula is required, or vice versa, and the test operators
ΦT can only be used at the top level of a formula. The path and state operator buttons produce a pop-up
menu with the available choices — for example, timed versus untimed until operators.

The most useful feature of the CSL editor is that it presents us with a list of the atomic formulae that
we defined in the abstraction view. Hence, we can easily refer to sets of states in the model, using the labels

6

78 Abstraction and Model Checking in the Eclipse PEPA Plug-In

Figure 5: The model checking interface

13:16:04 [badge.pepa] Model added.

13:16:04 [badge.pepa] Model parsed.

13:16:08 [badge.pepa] Kronecker state space derived. Elapsed time: 5 ms.

13:24:36 [badge.pepa] <Model Checker> Generating abstract CTMC...

13:24:36 [badge.pepa] <Model Checker> Optimising uniformisation constant to 7.0...

13:24:36 [badge.pepa] <Model Checker> Generated abstract CTMC with 72 states.

13:24:36 [badge.pepa] Property "P=? [Left Corridor U Right Corridor]" was checked in 28 ms.

Figure 6: Console output from the model checker

we created. Because the internal data structures are shared, if we change the name of a property in the
abstraction view, it will automatically be updated in the CSL formulae that use it. Similarly, a property
cannot be deleted from the abstraction view while it is being used in a formula.

Figure 5 shows the model checking view, from which the CSL editor can be opened. The main component
of the view is a table of all the properties that are defined for the model. When the Check Properties button
is pressed, all selected properties are model checked, and the results are displayed next to each property.
In this case, we have not abstracted the model, so the result is very precise — a probability interval of
[0.41615, 0.41635]3 . The only error here is due to the termination condition of the model checker itself, and
can be improved by modifying the Transient Accuracy field.

If we require more detailed information about the progress of the model checker, a log is available in the
console view. For readability, we reproduce the output of the console, for model checking the above property,
in Figure 6. In the next section, we will briefly discuss the implementation architecture in more detail, but
first let us consider some results obtained by abstracting the active badge model — this is, after all, the
purpose of our tool.

Table 1 shows the result of model checking two transient properties of the active badge model under
different abstractions. The first is the same untimed until property we have been considering up to now
(where we shorten Left Corridor to Left, and Right Corridor to Right). The second is a timed until property,
which states the same condition, but with the additional constraint that the database must enter state DB16

(the rightmost corridor) within one time unit. For each property, we investigate the effect of aggregating the
states of each of the sensors, and then finally aggregating all three of them at the same time.

The results clearly show how the choice of abstraction affects the precision of the bounds. For both
properties, abstracting sensor S14 has no effect on the bounds — hence we can halve the size of the model
without losing precision. The story for the other sensors is quite different, however. Aggregating S16 gives a
poor bound in both cases, whereas in the case of S15 the bound is much worse for the first property than the
second. Finally, aggregating all three sensors results in the largest reduction in the size of the model, but at
the cost of limited information for the second property, and no information for the first.

We can intuitively see why aggregating S14 has no affect on the precision, since it cannot cause the
database to move from its initial state. The other two sensors have the power to move the database to a
state that satisfies the property (in the case of S16), or violates the property (S15), hence aggregating either

3We have validated our results for concrete models against PRISM.

7

Michael Smith 79

CSL Property Aggregated States State Space Size Probability Interval

P=?(Left U Right) None 72 [0.41615, 0.41635]
{S14, rep14.S14} 36 [0.41615, 0.41635]
{S15, rep15.S15} 36 [0.06246, 1.00000]
{S16, rep16.S16} 36 [0.00000, 0.90004]
All of the above 9 [0.00000, 1.00000]

P=?(Left U [0,1] Right) None 72 [0.03018, 0.03019]
{S14, rep14.S14} 36 [0.03018, 0.03019]
{S15, rep15.S15} 36 [0.01556, 0.03199]
{S16, rep16.S16} 36 [0.00000, 0.62023]
All of the above 9 [0.00000, 0.63213]

Table 1: Abstract model checking of the active badge model

of them will have a big effect on the precision. Having said this, it is not obvious to begin with that it is safe
to aggregate S14, and in larger models safe abstractions can be even harder to find.

The advantage of our tool is that it allows us to experiment with different abstractions of the model,
without worrying about whether or not it is safe to do so. The results of the model checker are always accurate,
in that the actual probability of satisfying the property lies within the interval we obtain. Furthermore, if
an abstract model satisfies or violates a particular CSL property, we can be sure that the original model also
does. In the worst case, we might obtain imprecise bounds, but if we reduce the size of the model sufficiently,
there is very little cost involved.

5 Architecture of the Implementation

So far, we have looked at the user interface for abstracting and model checking PEPA models without
comment on the implementation details. Whilst a detailed description of the theory is beyond the scope
of this paper, it is useful to know something about the type of abstraction we use, to make use of the tool
more effectively4. A simplified view of the implementation architecture is shown in Figure 7. The dotted
box contains our addition to the PEPA plug-in, and we show how it interacts with the parts of the existing
tool that we take advantage of — namely, the PEPA editor and parser, and the Markov chain solvers5.

The key to our approach is in using a Kronecker representation of the state space of a PEPA model [12].
Rather than deriving the state space of the system, we store a separate transition matrix for each component
and action type. We can always derive the full state space by taking Kronecker sums and products of these
matrices [16]6, but they give a more compact representation in general. When we abstract a PEPA model,
we do so compositionally on its Kronecker state space. It is only when we come to analyse the abstract model
that we have to expand the Kronecker representation. The size of this representation is proportional to the
sum of the number of states in each sequential component — as opposed to the product, in the worst case,
for the expanded state space.

From the Kronecker state space, we generate a graph representation of the structure of each sequential
component, which we call the display model. This is rendered by the abstraction view, which manages a
sequential abstraction of each component, based on the states that the user is currently aggregating. It also
stores the set of atomic properties for the model, which is shared with the model checking view. The model
checking view in turn keeps track of a set of CSL properties for each model.

The heart of the tool is the abstraction engine. In general, if we aggregate states in a Markov chain,
we end up with a non-Markovian model, since we are no longer memoryless. However, if all the states in
each aggregate partition agree on the probabilities of moving to the other aggregate partitions — a condition

4For a more thorough account, see [18].
5We use a library of solution methods provided by the Matrix Toolkits for Java (MTJ) [2]
6Actually, it is slightly more complicated than this — we need to keep the exit rates and transition probabilities separated,

because of the minimum semantics of PEPA cooperation. For more details, see [18]

8

80 Abstraction and Model Checking in the Eclipse PEPA Plug-In

Figure 7: The architecture of the abstraction and model checking engine for PEPA

called ordinary lumpability [14] — then we do still end up with a Markov chain. Unfortunately, this condition
is rare in practice, and so we need to look for alternative techniques — in our case, we make use of two:

1. An abstract Markov chain [7,13] is the natural result of aggregating a Markov chain that is not lumpable.
Since the states in an aggregate partition have different transition probabilities, we take the maximum
and minimum probability of moving between two abstract states. This is similar to a Markov decision
process [17], and indeed the model checking algorithms are similar [13]. Since an abstract Markov chain
is not Markovian, it has no steady state solution — hence, we cannot use it to model check steady state
properties. We can, however, model check all other CSL formulae except the timed next operator7.

We can apply abstract Markov chains compositionally to PEPA models at a small loss of precision, by
applying the abstraction before expanding the Kronecker representation. This results in an abstract
CTMC that can be model checked in the usual way.

2. Stochastic bounding [19] of Markov chains is based on the principle of ordered probability distributions.
For one Markov chain to bound the steady state distribution of another, it must ensure that its dis-
tribution is a bound at all times. For any Markov chain, given an ordering on its state space and a
partitioning, we can algorithmically construct an upper (or lower) bound that is ordinarily lumpable
with respect to that partitioning [8]. This can be applied compositionally to PEPA, so that the bound
is constructed at the level of its Kronecker representation [18]. Since stochastic bounding produces
another Markov chain, we can solve it in the usual way to compute its steady state distribution, which
bounds that of the original model.

By combining these two distinct techniques, we are able to model check both transient and steady state
properties of abstract PEPA models.

6 A Larger Example

Before we conclude this paper, we will examine a larger PEPA model. Figure 8 is a model of a round-robin
server architecture, where the resources of a single server are shared between n computers. The server moves
around each computer in turn — if there is a job waiting, it services it before moving onto the next computer.

7The timed next operator is not preserved under uniformisation, which is used when we apply abstract Markov chains in a
continuous time setting.

9

Michael Smith 81

PC i = (arrive , λi).PC ′
i + (walkon (i+1) mod n,⊤).PC i

PC ′
i = (servei,⊤).PC i

Server i = (walkon (i+1) mod n, ω).Server (i+1) mod n + (serve i, µ).Server ′i
Server ′i = (walk (i+1) mod n, ω).Server (i+1) mod n

(PC 0 ‖ . . . ‖ PC n−1) ⊲⊳
{walkon0,...,walkonn−1,serve0,...,serven−1}

Server0

Figure 8: A PEPA model of a round-robin server architecture

CSL Property Aggregated States State Space Probability Interval

S=?(Server ′) None 768 [0.31184, 0.31184]
{Server ′0...5} 7 [0.00000, 0.33333]
{Server0...5} 7 [0.00000, 0.75000]

{Server ′2...5,Server 3...5} 6 [0.00000, 1.00000]

P=?(⊤ U [0,0.1] Server2) None 768 [0.53940, 0.53941]
{Server ′0...5} 448 [0.51954, 0.54567]
{Server0...5} 448 [0.00000, 1.00000]

{Server ′2...5,Server 3...5} 384 [0.53940, 0.53941]

Table 2: Abstract model checking of the round-robin server model

Jobs arrive at computer PC i at rate λi, and the service rate of the server is µ. The server moves between
computers at rate ω.

Consider this model when n = 6, in which case the concrete PEPA model has 768 states. To avoid any
symmetry in the model that could allow a more exact aggregation, we will assume that every computer has a
different arrival rate, λi = i + 1. The results of model checking two distinct properties are shown in Table 2.
The first property looks at the proportion of time spent in a Server ′ state, where the server has completed
a job, but has not yet moved to the next computer. The second property looks at the probability that the
server will reach PC 2 within the first 0.1 time units (given that it starts with PC 0).

Looking at the steady state property first, we see that aggregating all the Server ′ states gives a good
upper bound on the actual probability. Although the lower bound provides no information, this would be a
useful result if we were interested in verifying that the server spends no more than a certain proportion of
time in a Server ′ state. This is especially true when we consider that the state space has been reduced by
99%. The other choices of aggregation yield poor results, however, which illustrates how the best abstraction
depends entirely on the property we are analysing.

If we look at the second property, by comparison, we see that we achieve the best results when we
abstract all the states following Server2, but before Server0. In this case, we can halve the state space
without affecting the precision. In fact, since Table 2 only looks at aggregating states on the server, we can
do even better. If we aggregate the computer states for PC 2 . . . PC 5, we can reduce the state space to just
24 states (a 97% reduction in size) without affecting the precision. The reason we can achieve such good
results here, is that after the server passes through the Server2 state, the property must be satisfied — hence
we can ignore all subsequent states. The abstraction view allows us to take advantage of this aggregation
very quickly, without requiring any modifications to the model.

7 Conclusions

In this paper, we have described a new tool for abstracting and model checking PEPA models, which is an
extension of the Eclipse PEPA plug-in. It provides a graphical interface for labelling and aggregating states
of PEPA components, and for constructing and model checking CSL properties. The key advantage of the

10

82 Abstraction and Model Checking in the Eclipse PEPA Plug-In

tool is that it allows modellers to quickly experiment with different ways of abstracting their models, and to
take advantage of direct model checking facilities in the PEPA plug-in, without requiring external tools such
as PRISM. This is not to say that our tool is a replacement for other, more established model checkers, but
we feel that it is a useful addition to the artillery of the performance modeller.

Whilst a great deal has gone into the development of this tool, we are aware that there are still many areas
in which its capabilities can be expanded upon and improved. For example, we would like to add support
in the near future for PEPA’s aggregation notation, which provides a shorthand for specifying a number of
identical copies of the same component (e.g. Client [100]). We also intend to add support for exporting and
importing of CSL properties, so that the plug-in can more easily be used in conjunction with PRISM and
other tools.

Overall, whilst we have demonstrated the capabilities of our tool in this paper, our ultimate objective is
to provide a practical and useful contribution to the model checking community. We would be delighted if
you, the reader, could take the time to download and experiment with the new PEPA plug-in, and to provide
us with any feedback, comments, or suggestions for improvement. It is easy to install, and full instructions
are given at http://www.dcs.ed.ac.uk/pepa/tools/plugin. May many happy abstractions await you!

References

[1] The Eclipse platform. http://www.eclipse.org.

[2] Matrix Toolkits for Java (MTJ). http://code.google.com/p/matrix-toolkits-java/.

[3] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov chains. In Computer Aided
Verification (CAV), number 1102 in Lecture Notes in Computer Science, pages 269–276. Springer-Verlag, 1996.

[4] C. Baier, B.R. Haverkort, H. Hermanns, and J-P. Katoen. Model checking continuous-time Markov chains by
transient analysis. In Computer Aided Verification (CAV), pages 358–372, 2000.

[5] J. T. Bradley and W.J. Knottenbelt. The ipc/HYDRA tool chain for the analysis of PEPA models. In QEST
’04: Proceedings of the The Quantitative Evaluation of Systems, First International Conference, pages 334–335,
Washington, DC, USA, 2004. IEEE Computer Society Press.

[6] G. Clark, S. Gilmore, and J. Hillston. Specifying performance measures for PEPA. In ARTS ’99: Proceedings
of the 5th International AMAST Workshop on Formal Methods for Real-Time and Probabilistic Systems, pages
211–227, London, UK, 1999. Springer-Verlag.

[7] H. Fecher, M. Leucker, and V. Wolf. Don’t know in probabilistic systems. In Proceedings of SPIN’06, number
3925 in Lecture Notes in Computer Science, pages 71–88, 2006.

[8] J-M. Fourneau, M. Lecoz, and F. Quessette. Algorithms for an irreducible and lumpable strong stochastic bound.
Linear Algebra and its Applications, 386:167–185, 2004.

[9] S. Gilmore and J. Hillston. The PEPA workbench: A tool to support a process algebra-based approach to
performance modelling. In Proceedings of the Seventh International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, number 794 in Lecture Notes in Computer Science, pages 353–368,
Vienna, May 1994. Springer-Verlag.

[10] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.

[11] J. Hillston. Fluid flow approximation of PEPA models. In Proceedings of the Second International Conference on
the Quantitative Evaluation of Systems, pages 33–43, Torino, Italy, Sep 2005. IEEE Computer Society Press.

[12] J. Hillston and L. Kloul. An efficient Kronecker representation for PEPA models. In Proceedings of the Joint
International Workshop, PAPM-PROBMIV 2001, number 2165 in Lecture Notes in Computer Science, pages
120–135. Springer-Verlag, 2001.

[13] J-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstraction for continuous-time Markov chains. In
W. Damm and H. Herrmanns, editors, Proceedings of 19th International Conference on Computer-Aided Verifica-
tion (CAV’07), number 4590 in Lecture Notes in Computer Science, pages 316–329. Springer-Verlag, 2007.

[14] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer-Verlag, 1976.

11

Michael Smith 83

[15] M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model checker. In Computer
Performance Evaluation: Modelling Techniques and Tools, number 2324 in Lecture Notes in Computer Science,
pages 200–204, 2002.

[16] B. Plateau. On the stochastic structure of parallelism and synchronization models for distributed algorithms.
SIGMETRICS Performance Evaluation Review, 13(2):147–154, 1985.

[17] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1994.

[18] M.J.A. Smith. Compositional abstraction of PEPA models, 2009. In submission. Available from: http://lanther.
co.uk/papers/PEPA abstraction.pdf.

[19] D. Stoyan. Comparison Methods for Queues and Other Stochastic Models. Wiley & Sons, New York, NY, USA,
1983.

[20] M. Tribastone. The PEPA plug-in project. In M. Harchol-Balter, M. Kwiatkowska, and M. Telek, editors,
Proceedings of the 4th International Conference on the Quantitative Evaluation of SysTems (QEST), pages 53–54.
IEEE Computer Society Press, 2007.

12

84 Abstraction and Model Checking in the Eclipse PEPA Plug-In

Concerning Performance Driven
Cryptographic Protocol Development

Nicholas O’Shea

Abstract

We present a method of applying performance modelling to cryptographic
protocols and explore how this allows protocol developers to determine if there
are any bottlenecks in their protocol. When the deployment scenario has been
set implementers can determine how a chosen protocol works in that scenario.
Using the tools provided by the PAM framework network administrators can also
determine the most efficient use of any upgrade to the networkinfrastructure.

1 Introduction and Motivation

Since the dawn of civilisation, man has felt an inescapable need to communicate se-
curely. While we can now provide this, performance is lookedat as a critical mat-
ter. Noted security expert Bruce Schneier repeatedly states in [5] that “Security is a
trade-off”. While people are willing to wait for security, there are limits to how long
they will do so. There are multiple methods for analysing thesecurity properties of
cryptographic protocols and equally many methods of analysing the performance of
computer systems. In this paper we explore merging the two fields.

2 PAMeLa

PAM, Process Algebra Modelling, is a framework for representing process calculi as
labelled continuous-time Markov chains and analysing themusing the analysers of the
PEPA Eclipse Plug-in[6]. PAM allows stakeholders in Markovian process calculi to
generate the underlying labelled transition system from their favourite Markovian pro-
cess calculus and then pass this transition system to the PEPA Eclipse Plug-in for solu-
tion and visualisation of the results. The PAM language represents transition systems
using XML allowing the structure of the transition system tobe easily represented.

LySa[2] is a process calculus for describing cryptographicprotocols similar to
the Spi-calculus[1]. Using static analysis there are toolsfor analysing the security
properties of protocols modelled in this language.

We present PAMeLa, short for PAM-ersatz-LySa, an Eclipse plug-in which trans-
lates LySa models into PAM files which we can then analyse. Thetranslation process
between LySa and PAM is straightforward for simple protocols but as the protocols get
larger subtleties are discovered. A PAM file contains a series of states which can have
several transitions. A transition is a description of the resulting state along with a label
and rate for the transition from the original to the new state. For our use, a state is a

85

composition with each process representing a principal in aprotocol. As cryptographic
protocols do not typically have a notion of choice the transitions in a single process
are linear. There is some work to be done with automatically unrolling multiple and
nested encryption. Additionally, although there is no choice in a single principal there
is some option in the transitions. In the excerpt below, for example, either the first
or third process can transition to a new state, although the second is waiting for an
accompanying send process from principal B for this receiveprocess.

<state>
<composition>
<process>(new NA)</process>
<process>(new NB)</process>
<process>(B,S,M,A,B;z1,z2)</process>

</composition>
<transitions>
<transition>
<composition>
<process>(A,B,M,A,B,(A,B,M,NA))</process>
<process>(new NB)</process>
<process>(B,S,M,A,B;z1,z2)</process>

</composition>
<via name="(new NA (by A))" rate="n_A"/>
</transition>
<transition>
<composition>
<process>(new NA)</process>
<process>(A,B,M,A,B;y1)</process>
<process>(B,S,M,A,B;z1,z2)</process>

</composition>
<via name="(new NB (by B))" rate="n_B"/>
</transition>

</transitions>
</state>

This section comes from the Otway-Rees protocol presented below and the current
stage this section represents is emphasised.
(ν KAS) (ν KBS)
(!(ν NA) 〈A,B,M,A,B,{A,B,M,NA}KAS [at a1 dest{ s1}] 〉.
(B,A,M;x1). decrypt x1 as{NA;xk}KAS [at a2 orig{ s3}] in
(B,A;x2). decrypt x2 as{;xmsg}xk [at a3 orig{ b3}] in 0
|
!(ν NB) (A,B,M,A,B;y1).
〈B,S,M,A,B,y1,{A,B,M,NB}KBS [at b1 dest{ s2}] 〉.
(ν MSG) (S,B,M;y2,y3).
decrypt y3 as{NB;yk}KBS [at b2 orig{ s4}] in
〈B,A,M,y2〉.〈B,A,{MSG}yk [at b3 dest{ a3}] 〉.0
|
!(ν K) (B,S,M,A,B;z1,z2).
decrypt z1 as{A,B,M;zna}KAS [at s1 orig{ a1}] in
decrypt z2 as{A,B,M;znb}KBS [at s2 orig{ b1}] in
〈S,B,M,{zna,K}KAS [at s3 dest{a2}], {znb,K}KBS [at s4 dest{b2}] 〉.0)

The full state space diagram can be seen below, such diagramscan be automatically
generated by the PAMeLa Eclipse plug-in, although this one has been hand drawn in
an attempt to provide readability. The diagram demonstrates that while each principal

86 Concerning Performance Driven Cryptographic Protocol Development

is a linear system, there are several areas where different principals can advance at
different speeds before meeting up on shared transitions.

n A

n B

n S

n B

e A

n S

n S

n A

n B

n S
n B

n A

e A

n S

n A

e A

n B

t A B

n S

e A

n B

e B

n S

t A B

n S

e B

t B S

d S

n S

d S

n B

d S

e S

n B

d S

e S

n B

e S

n B

e St S Bd Bt B Ad B

e Be B

d At B Ad A

r

State Space Diagram

Different rates are generated for encryption, decryption,message generation and
communication for each separate principal and link betweenthem. Using the PEPA
Eclipse Plug-in we can then determine if the protocol is suitable for the intended de-
ployment scenario and if we were determined to improve one part of the infrastruc-
ture which part it should be. In cases such as the above Otway-Rees protocol, pre-
conditions on the protocol such as the shared keys KAS, KBS are removed from the
PAM model.

3 AutoRate

Without specifying the rates of the various transitions there is only so much benefit that
can be gained from analysis of the model. By declaring the type of connections and
devices we can automatically assign values to these required rates. This is done with
a graphical interface that makes it easier for those unfamiliar with the formal model to
achieve desirable results quickly. A screen-shot of this can be seen in Figure 1. A user
can choose the type of device that the principal will run on and the network speed of
the connection between communicating principals. This information will then be used
to automatically calculate the rates for all the transitions. This particular deployment
scenario automatically generates the following rates:

<parameter name="e_S" value="8.961646000000002"/>
<parameter name="t_B_A" value="135.0"/>
<parameter name="n_S" value="2330.0"/>
<parameter name="t_S_B" value="250.0"/>
<parameter name="d_B" value="1165.0"/>
<parameter name="d_A" value="550.0"/>
<parameter name="n_B" value="2330.0"/>
<parameter name="n_A" value="1100.0"/>
<parameter name="t_B_S" value="250.0"/>
<parameter name="e_B" value="8.961646000000002"/>
<parameter name="d_S" value="1165.0"/>

Nicholas O’Shea 87

Figure 1: AutoRate Screenshot

Figure 2: Utilisation Graphs of principals (clockwise fromtop left) A, B and S

<parameter name="r" value="6.2E9"/>
<parameter name="t_A_B" value="135.0"/>
<parameter name="e_A" value="4.2308200000000005"/>

4 Analysing Otway-Rees

If we look at the graphs presented in Figure 2 for each protocol’s utilisation we see
that most of the time is spent waiting for a message to arrive.This tells us that the
devices that are used are sufficient to not be a bottleneck on the system. Looking at
experimentation graphs we see that there is a certain point where it is worth upgrading
this component after which improving the speed of the network will have little effect.
Figure 3 is typical of all the transmission speed experimentation graphs and we can see
the curve levels off at a rate of around 80 and anything after that makes little difference.
As our rates are over this threshold while we can improve the performance it would not
be an efficient use of resources to do so as the performance increase would be marginal
without a large investment.

5 Conclusion

It is important for implementers to be able to make sure that they choose an appropriate
protocol for their deployment scenario. For protocol developers it is equally important
that their design is not so flawed as to include unnecessary performance bottlenecks.

88 Concerning Performance Driven Cryptographic Protocol Development

Figure 3: Varying the rate of transmission from principal A to principal B

PAMeLa allows protocol developers to utilise powerful performance analysis without
needing any knowledge of the underlying mechanics or language. With the aid of the
AutoRate plug-in appropriate rates are automatically calculated based on a user’s se-
lected deployment scenario, eliminating a difficult aspectof performance modelling.
With these tools, network administrators can work out the best way of improving the
performance of their network thus potentially saving time and money instead of acci-
dentally devoting resources to areas which would not improve performance.

A theoretical approach to performance evaluation for security protocols has al-
ready been attempted in work such as [3]. This work relies on establishing a new
extended operational semantic for LySa in which each transition is assigned a label.
Here we provide an easy-to-use alternative that fits in with both the PEPA Eclipse
Plug-in and the LySa Toolkit in Eclipse (LyTE)[4].

There are a few avenues for further work. It would be useful tobe able to perform
response time analysis on the generated PAM models. The rates for communication
and encryption could be made size-dependant. Additionallymore simulation work to
improve the pre-defined rates would be beneficial, perhaps providing different rates
for different encryption algorithms or for devices under different loads with multiple
instances of a protocol running.

References
[1] Martı́n Abadi and Andrew D. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. InFourth

ACM Conference on Computer and Communications Security, pages 36–47. ACM Press, 1997.

[2] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Nielson. Automatic validation of protocol narration.
Proceedings of 16th IEEE Computer Security Foundations Workshop (CSFW 16), pages 126–140, 2003.

[3] Chiara Bodei, Michele Curti, Pierpaolo Degano, Mikael Buchholtz, Flemming Nielson, Hanne Riis Nielson, and
Corrado Priami. Performance Evaluation of Security Protocols Specified in LySa.Electr. Notes Theor. Comput.
Sci., 112:167–189, 2005.

[4] Nicholas O’Shea. Protocol Analysis in a new LyTE. InProceedings of The 13th Nordic Workshop on Secure IT
Systems, pages 83–94, 2008.

[5] Bruce Schneier.Secrets and Lies : Digital Security in a Networked World. Wiley, January 2004.

[6] M. Tribastone, A. Duguid, and S. Gilmore. The PEPA Eclipse Plug-in.Performance Evaluation Review, 36(4):28–
33, March 2009.

Nicholas O’Shea 89

Part II

Bio-PASTA

91

A computational method based on temporal logic

for parameter search and robustness analysis of

biological models

— Invited Talk —

François Fages
INRIA Paris-Rocquencourt, France

Abstract

Temporal logics have proven useful as specification languages for de-
scribing the behavior of a broad variety of systems ranging from elec-
tronic circuits to software programs, and more recently biological systems
in either boolean, discrete, stochastic or continuous settings. Because
temporal logics allow us to express both qualitative (e.g. some protein
is eventually produced) and quantitative (e.g. a concentration exceeds
10) information about time and systems variables, they provide a pow-
erful specification language in comparison with the essentially qualitative
properties considered in dynamical systems theory (e.g. multistability, ex-
istence of oscillations) or with the exact quantitative properties considered
in optimization theory (e.g. curve fitting). In this talk, we define a contin-
uous degree of satisfaction of a temporal logic formula with constraints,
and show how it can be used as a fitness function with state-of-the-art
optimization methods for finding kinetic parameter values satisfying a set
of biological properties formalized in temporal logic. We also show how it
can be used to define a measure of robustness of a biological model with
respect to some temporal specification. These methods, implemented in
BIOCHAM, are evaluated on models of the cell cycle and of the MAPK
signalling cascade.

(Joint work with Aurélien Rizk, Grégory Batt and Sylvain Soliman)

1

93

Modelling Scaffold-mediated Crosstalk between the
cAMP and the Raf-1/MEK/ERK Pathways

Oana Andrei and Muffy Calder

Department of Computing Science, University of Glasgow
Glasgow G12 8RZ, UK

Abstract. We study the biochemical processes involved in scaffold-mediated
crosstalk between the cAMP and the Raf-1/MEK/ERK pathways. We model
the interactions by a continuous time Markov chain with levels and analyse
properties using Continuous Stochastic Logic and the symbolic probabilistic
model checker PRISM. We consider a number of biologically relevant properties
of the model, including sequentially dependent events and pulsating behaviour.
In order to handle these kinds of properties, we extend the model with signs of
first order derivatives.

1 Introduction

In the context of intracellular signalling pathways, a scaffold is a protein whose main
role is to anchor particular proteins in the proper locations for receiving signals or
transmitting them. In addition, under certain circumstances, a scaffold can increase
the output of a signalling cascade or decrease the response time for a faster output.

In this paper we present a model of scaffold-mediated crosstalk between the cyclic
adenosine monophosphate (cAMP) and the Raf-1/MEK/ERK pathways, an interaction
that has an important role in the regulation of cell proliferation, transformation and sur-
vival. We use continuous time Markov chains with levels (CTMC with levels) [CDHC09]
and the PRISM model checker [KNP07] to develop and analyse a number of predictive
models. Our aim is to provide new quantitative analysis and new ways to model and
reason about behaviour that is not yet completely understood or quantified.

We express properties in Continuous Stochastic Logic (CSL) [BHHK03], in particu-
lar some restrictive case of sequentiality properties and pulsations. In order to analyse
these kinds of properties, for each variable of interest we add a new variable in the
model representing the sign of its derivative.

The paper is organised as follows. In the next section we introduce the basics about
scaffolds and the role of an AKAP scaffold in particular. In Section 3 we give an
overview of the PRISM model. Section 4 contains a description of some properties of
interest and the results of analysis. Conclusion and directions for future work follow.
We note that the behaviour of scaffold proteins modelled here is the topic of current
wet-lab investigation. Our models have been informed by discussions with a number
of experimentalists: some aspects of behaviour are still unknown and the subject of
conjecture.

2 Scaffold proteins and the AKAP

In intracellular signal transduction pathways, scaffolds are proteins playing an organi-
sational role rather than a signalling role [JEF00]. Scaffolds have a anchoring function

95

by placing particular proteins in the proper intracellular locations for receiving signals
or transmitting them. Experiments have shown that under certain circumstances, a
kinase scaffold can increase the output of a signalling cascade or decrease the response
time for a faster output. Therefore scaffolds may also exhibit a catalytic function. An-
other property of the scaffolds is combinatorial inhibition: if there are too many or too
few of either scaffolds or kinases, the output of the pathway decreases.

We are interested in particular in the behaviour of the A-kinase anchoring protein
(AKAP for short) in the context of crosstalk between cyclic AMP and the
Raf-1/MEK/ERK pathway. The species we are interested in are the following: (i) cyclic
adenosine monophosphate (cAMP); (ii) protein kinase A (PKA), the main cAMP ef-
fector; (iii) Raf-1 with two phosphorylation sites of interest, Serine 338 (S338) and
Serine 259 (S259); (iv) phosphodiesterase 8 (PDE8A1), (v) phosphatase PP.

If the concentration level of cAMP goes above the basal one, cAMP activates PKA
by binding to its regulatory subunits. When PKA becomes activate, its catalytic sub-
units catalyse the transfer of ATP terminal phosphates to the phosphorylation site
S259 of Raf-1. The site S338 of Raf-1 is inhibited when S259 is phosphorylated. Only
when S338 gets phosphorylated, the pathway Raf-1/MEK/ERK is activated and the
signalling cascade begins.

The catalytic function of PKA would sometimes couple with the AKAP, by binding
PKA together with phosphodiesterase PDE8A1 on the scaffold to form a complex
that functions as a signal module. Under these conditions, as the cell is stimulated,
cAMP activates PKA, and then PKA is responsible for the activation of PDE8A1 (by
phosphorylation). PDE8A1 converts cAMP to AMP by hydrolysis. If phosphorylated,
PDE8A1 degrades more cAMP, hence rapidly reducing the amount of cAMP that can
activate PKA hence leading to a feedback mechanism for downregulating PKA.

The inhibition of Raf-1 at S338 is correlated with a high activity of PKA. At the
beginning, cAMP synthesis is induced, causing a rise of PKA’s activity that continues
in the inhibition of Raf-1.

We illustrate the AKAP scaffold and the regulatory mechanism described above in
Figure 1. We use three different types of arrow to distinguish between different types
of interactions:
• A activates or phosphorylates B : A // B

• A dephosphorylates B : A //___ B

• A degrades B : A �
B

The arrow with no source and with target cAMP represents a diffusion of cAMP from
the environment.

The AKAP scaffold has three positions to be filled by PKA, Raf-1 and PDE8A1
respectively. Hereafter we use a binary representation of the states of each position: 1
for activation or phosphorylation and 0 otherwise. The second position concerns the
state of the site S259 of Raf-1. If the scaffold position for PDE8A1 is not filled, we only
represent the first two positions of the scaffold. For instance S100 stands for a filled
scaffold with active PKA and unphosphorylated PDE8A1 and site S259, whereas S01
for an unfilled scaffolded with inactive PKA and phosphorylated S259.

In Figure 2 we describe the biochemical reactions of the model. Each reaction is
given in pseudo-chemical notation, with explicit reference to the scaffold positions (the
underlying reactions have mass action kinetics). We associate reaction rate constants
(from r1 to r26) with each biochemical reaction.

Currently, we do not have good experimental data concerning rates for the re-
actions. However, we have some information on the ratio between the rate of PKA

96 Modelling Scaffold-mediated Crosstalk between the cAMP and the Raf-1/MEK/ERK Pathways

Fig. 1. Interactions between cAMP, filled AKAP scaffold, unfilled scaffold and free PDE8A1

(cAMP diffusion)
→r1 cAMP

(PKA activation)
S000 + cAMP →r2 S100
S00 + cAMP →r3 S10

(S259 phosphorylation)
S100→r4 S110
S101→r5 S111
S10→r6 S11

(S259 dephosphorylation)
PP + S010→r7 PP + S000
PP + S011→r8 PP + S001
PP + S01→r9 PP + S00

(cAMP release)
S111→r17 S011 + cAMP
S11→r18 S01 + cAMP

(PDE8A1 phosphorylation)
S100→r10 S101
S110→r11 S111
S10 + PDE8A1→r12 S10 + pPDE8A1
S11 + PDE8A1→r13 S11 + pPDE8A1

(PDE8A1 dephosphorylation)
PP + S001→r14 PP + S000
PP + S011→r15 PP + S010
PP + pPDE8A1→r16 PP + PDE8A1

(cAMP degradation)
S011 + cAMP →r19 S011
S001 + cAMP →r20 S001
S100 + cAMP →r21 S100
S110 + cAMP →r22 S110
S010 + cAMP →r23 S010
S000 + cAMP →r24 S000
pPDE8A1 + cAMP →r25 pPDE8A1
PDE8A1 + cAMP →r26 PDE8A1

Fig. 2. Biochemical reactions occurring during scaffold-mediated crosstalk between the cAMP
and the Raf-1/MEK/ERK pathway

phosphorylating Raf-1 at S259 and PDE8A1 (either on the scaffold or not). On un-
filled scaffolds, PKA phosphorylates two or three times less unscaffolded PDE8A1 than
Raf-1 at S259 from the same scaffold. On filled scaffolds, PKA phosphorylates at the
same rate Raf-1 at S259 and PDE8A1. Consequently the relation between constant
rates of the reactions involving PKA phosphorylating either PDE8A1 or Raf-1 is:
r4 = r5 = r6 = r10 = r11 = 3 ∗ r12 = 3 ∗ r13. In addition, phosphorylated PDE8A1
degrades about three times more cAMP than PDE8A1 does, hence the following ra-
tios between the constants rates of the reactions where PDE8A1 degrades cAMP:
r19 = r20 = r21 = r22 = r23 = r24 = 3 ∗ r25 = 9 ∗ r26.

Oana Andrei and Muffy Calder 97

Finally, when PKA and PDE8A1 form a complex on the scaffold, PKA’s activity
becomes more efficient.

Our discussions with experimentalists have revealed the following expectations, or
conjectures, about AKAP behaviour.

Question 1. Increasing the amount of phosphorylated PDE8A1 leads to a cascade of
changes in the concentration levels of the other reactants: decreasing amounts of cAMP
and active PKA, and an increase in the activity of Raf-1 due to lower levels of phos-
phorylated Raf-1 at site S259. Informally, we express this behaviour by the following
implication, where ↑ (resp. ↓) denotes increase (resp. decrease):

↑ pPDE8A1⇒ ↓ cAMP⇒ ↓ active PKA⇒ ↓ pRaf-1S259 ≡ ↑ active Raf-1

Question 2. Interactions between cAMP and Raf-1 and other molecules are not con-
sidered in the current model. However, the system is not closed, we include a kind of
exogenous interaction concerning the diffusion of cAMP. We conjecture this leads to a
fluctuation of the concentrations of some reactants. Namely, the system should exhibit
a pulsating behaviour corresponding to the feedback mechanism for the downregulation
of PKA coupled with the diffusion of cAMP. Time courses from laboratory experiments
suggest the presence of a pulsating behaviour. Pulsation ensures that the state of the
Raf-1 pathway alternates such that it is not always (or for a very long period of time)
either active or inactive (which may increase the risk of disease). Note that we call such
a behaviour pulsating, not oscillating. This is because oscillation assumes fluctuation
around a given value; current data does not provide us with such a value, hence our
choice of pulsating rather than oscillating behaviour.

3 Modelling AKAP with CTMCs with Levels

Following the style adopted in [CVGO06], we define a PRISM model for a CTMC with
levels as follows. There are modules for cAMP, scaffold, PDE8A1 and PP, each with
corresponding variables representing levels of concentrations. In particular, the module
for the scaffold has a variable for each possible combination of positions (S000, S100,
S101, S110, S011, S010, S001, S111, S00, S10, S01, S11). Commands in the modules
correspond to reactions, which are synchronised on each participating module (i.e.
consumers and producers in the chemical reaction). Additionally, we defined diffusion
of cAMP from time to time.

As an example, consider the reaction r2 where cAMP activates PKA when the level
of cAMP is above the basal level. Then in the module describing cAMP we add the
command:

[activate_PKA] (cAMP > basal_camp) -> (cAMP) : (cAMP’ = cAMP-1);

while in the module describing the scaffold we have the coupling command:

[activate_PKA] (S000 > 0) & (S100 < scaffold_max) ->

(r2*S000) : (S100’ = S100+1) & (S000’ = S000-1);

In the definition of the PRISM model, we used the convention that the rate constant
goes in the command corresponding to the consumer reactant, in this case PKA. By
synchronisation on the common label, the reaction rate will then be the product of the
constant rate r2 and the concentration levels of cAMP and PKA.

98 Modelling Scaffold-mediated Crosstalk between the cAMP and the Raf-1/MEK/ERK Pathways

Unless otherwise stated, we assume the number of levels N = 2. We consider max-
imum N levels of filled/unfilled scaffolds, 2 ∗N levels of phosphatase PP, and around
N/2 levels of unscaffolded PDE8A1. Whereas for cAMP, since it is diffused in the sys-
tem, we allow a greater concentration of cAMP, maximum 10 ∗ N . Full details of the
model are available from the authors.

4 Analysis

We use rewards based properties and CSL properties to formalise the questions posed
in Section 2 and PRISM to verify their satisfaction (or not).

First, we consider Question 1, using rewards to compute the expected level of con-
centration at a particular time.

Second, we consider transient properties concerning the sequentiality of events and
pulsating behaviour. We extend the states of the CTMC model to include (signs of)
derivatives, for some variables of interest.

Reward-based Properties. For each species of interest: phosphorylated PDE8A1,
free cAMP (not bound to some PKA), active PKA and phosphorylated Raf-1 at site
S259, we add a reward construct to compute the expected level of concentration at
a particular time. For example, the reward associated with phosphorylated PDE8A1
computes the sum of the level of unscaffolded and phosphorylated PDE8A1 and the
levels of scaffolded and phosphorylated PDE8A1, at each time instant.

rewards "phosphopde8"

true : pPDE8A1 + S101 + S111 + S001 + S011;

endrewards

In Figure 3 we plot the expected levels of concentration for each species. Note a
delayed pulsation of all variable values. However, this does not prove that the properties
expressed in Section 2 are satisfied; for this, we formulate temporal properties.

Fig. 3. Expected levels of concentrations of phosphorylated PDE8A1, free cAMP, active PKA,
and phosphorylated Raf-1 at site S259 after 30 time-units

Oana Andrei and Muffy Calder 99

Derivative-based Transient Properties. We extend the CTMC with levels model
such that for each species in the biochemical system, we add a new variable representing
the sign of the value of the derivative. Then, each PRISM command associated with
a transition updates not only the values of some variables, but also the signs of their
derivative as well. For efficiency reasons we include a derivative only for variables
occurring in the properties of interest. In our particular model, we add derivatives for
cAMP, active PKA and scaffolded phosphorylated PDE8A1.

We illustrate here how the signs of the derivatives are updated in the scaffold module
for the reaction where cAMP activates PKA:

[activate_PKA] (S000 > 0) & (S100 < scaffold_max) ->

(r2*S000) : (S100’ = S100+1) & (S000’ = S000-1) &

(drv_PKA_A’ = 1) & (drv_S259_P’ = 0) & (drv_PDE8_P’ = 0);

Since the level of active PKA is affected (increased) by this command, the derivative
of PKA becomes positive, whereas the rest of derivatives become 0 since there is no
change in the variables values.

We now formalise the temporal properties. In the following, for x a variable, we
denote by ↓ x a negative derivative of x and by ↑ x a positive derivative of x.

Necessarily Preceded. We express the property in Question 1 as a temporal query using
the necessarily preceded or requirement pattern [MRM+08]. This pattern represents an
ordering relation between two events, the occurrence of the later being conditioned by
the occurrence of the former: a state φ is reachable and is necessary preceded all the
time by a state ψ. The associated CTL formula of this pattern is:

EFφ ∧ (AG((¬ψ)⇒ AG(¬φ)))

Assume the following two state formula:

φ =↓ cAMP∧ ↓ active PKA ψ =↑ pPDE8A1

with φ corresponding to a state where the levels of cAMP and active PKA are de-
creasing, and ψ to a state where the level of phosphorylated PDE8A1 is increasing.
Employing basic propositions equivalences, we translate the requirement pattern into
CSL to obtain the following formula which was checked as true for our PRISM model:

P>0[Fφ] ∧ P≤0[F (¬((¬ψ)⇒ P≥1[F (¬φ)]))]

Pulsating behaviour. An oscillating behaviour concerns fluctuation around a given value
k. Oscillation and its expression as temporal formulas in CTL and PCTL have been
studied in [BMM09] and informally described as always in the future, the variable x
departs from and reaches the values k infinitely often. The corresponding CTL formula
is:

AG(((x = k)⇒ EF (x 6= k)) ∧ ((x 6= k)⇒ EF (x = k)))

However, as discussed earlier, we are interested in pulsating behaviour, i.e. no fixed
k. We therefore consider oscillations (around 0) of the values of the first derivatives of
some variables. We refer to this approximate oscillating behaviour as pulsation. Note
that we can observe a pattern corresponding to a pulsation in Figure 3: we repeat-
edly have the situation where the level of phosphorylated PDE8A1 increased whereas
the levels of cAMP and active PKA decreased, and then the level of phosphorylated

100Modelling Scaffold-mediated Crosstalk between the cAMP and the Raf-1/MEK/ERK Pathways

PDE8A1 decreased whereas the levels of cAMP and active PKA increased. Assume the
following two state formulas:

φ = ↑ pPDE8A1 ∧ ↓ cAMP∧ ↓ active PKA
ψ = ↓ pPDE8A1 ∧ ↑ cAMP∧ ↑ active PKA

We translate the CTL temporal formula describing an oscillation to a CSL formula
for a pulsation involving the two state formulas above and we obtain the following
formula checked as true for our model using PRISM:

P≤0[F (¬(φ⇒ P>0[Fψ]) ∨ ¬(ψ ⇒ P>0[Fφ]))]

5 Related work

Derivatives have been considered previously in the context of model checking. For
example in BIOCHAM [Fag05,RBFS08], the query language associated is LTL with
constraints over real numbers, evaluated using a symbolic model checker written in
Prolog. Again, in the context of BIOCHAM [CRCFS04], a weaker form of oscilla-
tion properties expressed in CTL are used with the symbolic model checker NuSMV;
the oscillating behaviour is approximated by the necessary but not sufficient formula
EG((EF¬ϕ) ∧ (EFϕ)).

6 Conclusion and Future Work

We have developed a stochastic model of the behaviour of the AKAP scaffold and
scaffold-mediated crosstalk between the cAMP and the Raf-1/MEK/ERK pathways.
The model is a CTMC with levels and is implemented in the PRISM language.

We have considered questions and conjectures concerning system behaviour posed
by experimentalists; these include sequentially dependent events and pulsating be-
haviour. In the context of imprecise and incomplete data, pulsation seems more appro-
priate than oscillation. We have used rewards and CSL to express the properties, and
checked them with the PRISM model checker. In order to express pulsation, we have
added a representation of signs of first derivatives to the stochastic model. Preliminary
discussions with experimentalists confirm their interest and validation of the model
and analysis.

Future work includes adding explicit derivatives, so that we can reason about the
amplitude of the pulsation. We will refine the model with data on the rates, as the
data becomes available, and add more detail such as it requires 4 molecules of cAMPs
to activate one PKA. We will also investigate the value of adding second derivatives to
identify local minima and maxima.

We have investigated further hypotheses, such as whether the way PDE8A1 de-
creases the PKA phosphorylation of Raf-1 at S259 can be counterbalanced by the
addition of a PDE8A1 inhibitor such as the a drug Dipyridamole. This is the topic of
a further paper.

Acknowledgements

We would like to thank Walter Kolch, George Baillie and Kim Brown from the Faculty
of Biomedical & Life Science, University of Glasgow, for discussions, guidance and
insight into the AKAP scaffold.

Oana Andrei and Muffy Calder 101

This research is supported by the SIGNAL project, funded by the Engineering and
Science Research Council (EPSRC) under grant number EP/E031439/1.

References

[BHHK03] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Ka-
toen. Model-Checking Algorithms for Continuous-Time Markov Chains. IEEE
Trans. Software Eng., 29(6):524–541, 2003.

[BMM09] Paolo Ballarini, Radu Mardare, and Ivan Mura. Analysing Biochemical Oscilla-
tion through Probabilistic Model Checking. Electr. Notes Theor. Comput. Sci.,
229(1):3–19, 2009.

[CDHC09] Federica Ciocchetta, Andrea Degasperi, Jane Hillston, and Muffy Calder. Some
Investigations Concerning the CTMC and the ODE Model Derived From Bio-
PEPA. Electr. Notes Theor. Comput. Sci., 229(1):145–163, 2009.

[CRCFS04] Nathalie Chabrier-Rivier, Marc Chiaverini, Vincent Danos François Fages, and
Vincent Schächter. Modeling and querying biomolecular interaction networks.
Theoretical Computer Science, 325(1):25–44, 2004.

[CVGO06] Muffy Calder, Vladislav Vyshemirsky, David Gilbert, and Richard J. Orton. Anal-
ysis of Signalling Pathways Using Continuous Time Markov Chains. In Corrado
Priami and Gordon D. Plotkin, editors, T. Comp. Sys. Biology, volume 4220 of
Lecture Notes in Computer Science, pages 44–67. Springer, 2006.

[Fag05] François Fages. Temporal Logic Constraints in the Biochemical Abstract Machine
BIOCHAM. In Patricia M. Hill, editor, LOPSTR, volume 3901 of Lecture Notes
in Computer Science, pages 1–5. Springer, 2005.

[JEF00] Jr. James E. Ferrell. What Do Scaffold Proteins Really Do? Sci. STKE,
2000(52):1–3, 2000.

[KNP07] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Stochastic Model
Checking. In Marco Bernardo and Jane Hillston, editors, SFM, volume 4486 of
Lecture Notes in Computer Science, pages 220–270. Springer, 2007.

[MRM+08] Pedro T. Monteiro, Delphine Ropers, Radu Mateescu, Ana T. Freitas, and Hidde
de Jong. Temporal logic patterns for querying dynamic models of cellular inter-
action networks. Bioinformatics, 24(16):227–233, 2008.

[RBFS08] Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. On a Con-
tinuous Degree of Satisfaction of Temporal Logic Formulae with Applications to
Systems Biology. In Monika Heiner and Adelinde M. Uhrmacher, editors, CMSB,
volume 5307 of Lecture Notes in Computer Science, pages 251–268. Springer, 2008.

102Modelling Scaffold-mediated Crosstalk between the cAMP and the Raf-1/MEK/ERK Pathways

Towards a process-calculi approach to study the

evolution of biological networks

Alessandro Romanel

CoSBi and Universitá di Trento, Italy

Over the last decade an increasing interest in using evolutionary approaches to study
biological networks has continuously grown. Understanding how networks emerged during
evolution can help us to understand their basic properties, such as the role of complexity
and the importance of topology and feedback loops.

In [5] we developed a specific framework to allow straightforward study of network evo-
lution based on BlenX [4] and the Beta Workbench [3], a process calculi based programming
language and its stochastic simulation engine, respectively. We proposed a framework for
simulating the evolution of protein-protein interaction networks where evolution proceeds
through selection acting on the variance generated by random mutation events, and indi-
viduals replicate in proportion to their performance, referred to as fitness. This follows the
idea that in order to simulate evolution by natural selection, we must be able to express
populations of individuals, variability and fitness.

BlenX represents a protein as a computational entity, a box, composed by a set of interfaces

and an internal program. Interfaces, which represent protein domains, have associated a sort

(i.e. representing the structure of the domain) and are the places where a protein interacts
with other proteins; the internal program, instead, codifies for the mechanism that transforms
an interaction into a protein conformational change, which can result in the modification of
other interface sorts.

A BlenX program specifies qualitatively and quantitatively a system of proteins and their
interaction capabilities. In particular, the former are specified through a binary relation α

on interface sorts (see [4] for details). The graphical notation of boxes and their interaction
capabilities we use throughout this paper is depicted in Fig.1(a). Since in our evolutionary
framework a system specified by a BlenX program represent and individual (see Fig.1(b)),
a population consists of a set of different BlenX programs, each representing an individual
composing the population (see Fig.1(c)).

In [5] the evolution of a population is implemented with an evolutionary algorithm which
works in four main parts and is iterated for a specified number of steps; each iteration is
called generation. The algorithm firstly generates the initial population; the population can
be generated randomly, from a predefined network configuration to be used as a starting
point, or it can be a network with no interactions. Each individual in the population is

1

103

(a) Boxes and boxes interactions (b) Individual (c) Population

Figure 1: a) The small squares on the border of boxes are the interfaces; C, D E,... are
the interface structures (omitted when not necessary); P1, P2,... are internal programs
and B1, B2,... are the names of the boxes (protein species). The arrows are the graphical
representation of the compatibility relation α (on top) which describes qualitatively and
quantitatively boxes interaction capabilities, i.e., through which interface pairs two boxes
can exchange signals and communicate. b-c) Examples of an individual and a population of
different individuals.

then simulated separately using the Beta Workbench stochastic simulator, and the outputs
of the simulations are used to compute the fitness values of the individuals. Like in a real
environment, individuals with the highest fitness values are more likely to survive, repli-
cate and produce a progeny that resembles them, being not, however, completely equal to
them. This part of the algorithm, indeed, creates a new population with the same number
of individuals of the current population, using as a base the current individuals. Depending
on a probability proportional to the fitness measure, individuals replicate and pass to the
next generation. During the replication, each protein in the individual is given the chance
to mutate, according to a probability. The different types of mutations we considered in
[5] are based on real biological processes where mutations can happen at DNA and protein
level. Variability is achieved by associating each of the considered mutations to a BlenX

program modification. The great flexibility of BlenX in the definition of the structure of
proteins, indeed, allow us to introduce primitives for mutations used to build domain-based
interaction and mutation models. Starting from the study of mutations at a biological level,
we end up with some interesting program modifications that permit us to mutate the BlenX

representation of proteins in a meaningful and automatic way.

It is clear that the measure of fitness is problem dependent: it varies with the kind of
network, with the characteristics a scientist wants to investigate, and so on. This measure can
be done in various ways, including stability analysis, integration of the signal, measure of the
derivative. In [5] the fitness was computed using integration of protein species time-courses
in stochastic simulation results. Here we propose and discuss a theoretical framework, based

2

104 Towards a process-calculi approach to study the evolution of biological networks

on concurrency theory, for computing certain classes of fitness measures. The goal of this
paper is to present intuitively and informally most of the ideas we want our framework to
be based on.

The dynamics of a system implemented by a BlenX program is described by a stochastic
structural operational semantics, which distinguishes between monomolecular reactions (a
single box is involved), bimolecular reactions (two boxes interact by means of synchroniza-
tion or communication) and events (global box rewriting rules), allowing the generation of
transition systems with arcs labelled by stochastic rates. This dynamics results exactly in
the behaviour we are interested to study, i.e., trajectories in transition systems encode the
discrete variation of protein species and protein domains amounts. In particular, we are
interested in determining if the dynamics of protein species and protein domains in a given
system fits an ideal behaviour, i.e., a certain time-course representing the ideal performance
(see Fig.2). When we say fits, we intrinsically admit an amount of error, hence opening the
doors to the realm of approximation methods [1, 2, 8, 6]. These methods aim to bridge the
gap between rigid equivalence checking techniques and more relaxed requirements of real
systems, and some of them deal with notions of behavioral equivalence for deciding if two
systems behave almost (up to small errors or fluctuations) the same or, more formally, for
measuring the distance between systems. One well-established approach uses pseudometrics,
which give a measure of the similarity of systems that are not equivalent (see e.g. [8, 6]).

(a) (b)

Figure 2: a) Example of ideal behaviour of a single protein species; b) Example of ideal
behaviours of a set of protein species.

At this stage, anyway, we are not interested in comparing systems, but only systems
against ideal behaviours. We rely on an approximated variant of the simulation preorder

notion for deciding if a system almost simulates (fits) a certain ideal behaviour. Denoting
with Si a i-th discrete configuration of a system described in BlenX, an ideal behaviour (or
more generally a set of ideal behaviours) can be represented as a trace of the form:

T = S0

t0−→ S1

t1−→ S2

t2−→ · · ·
tn−1

−−→ Sn

3

Alessandro Romanel 105

where ti values represent times. It is clear how this trace definition captures the notion of
time-course (or more generally of a set of time-courses). However, since we deal with times,
it is quite obvious that traces can be used to represent behaviours at different time scales.
For simplicity, we start by considering only traces at the same time scale of BlenX systems
dynamics.

In order to develop further our fitness definition, we have first to introduce a notion of
observables. At this stage we consider the two main properties we are interested to observe
in a system configuration, namely the amount of protein species and protein domains. In
our BlenX setting, classes of structurally equivalent boxes represent protein species while
interfaces with same sorts represent protein domain classes. Denoting with S the system
configuration reported in Fig.1(b), we indicate with Obss(S,B4) and Obsd(S,E) observations
in S of, as an example, protein species B4 and domains E, respectively, obtaining:

Obss(S,B4) = 3 and Obsd(S,E) = 11

Note that given a protein species B and a protein domain A, the functions:

dB

d
(X,Y) = |Obss(X,B)−Obss(Y,B)| and dA

s
(X,Y) = |Obsd(X,A)−Obsd(Y,A)|

are metrics on the set of BlenX system configurations. These notions of distance represent
two of the ingredients we want to use to develop our approximated simulation relation. Given
a bound ǫ, indeed, we can construct a relation that compares systems and ideal behaviours
up-to fluctuations of protein species and protein domains amounts within the range ǫ. As
an example, the following picture shows how a BlenX transition system trajectory match a
trace up-to fluctuations in the amount of protein species B within the range ǫ.

It is quite clear how traces differ from BlenX transition systems trajectories by the pres-
ence of times instead of stochastic rates on arc labels. Here we relate traces and trajectories
by considering the expected values of the negative exponential distributions with parameters
λi. Given a bound σ 1, if we have that the distances:

|∆1 = t1 −
1

λ1

| , |∆2 = ∆1 + t2 −
1

λ2

| , · · · , |∆n−1 = ∆n−2 + tn−1 −
1

λn−1

|

are all less than σ, then we know that the trajectory has an average time behaviour which
is close to the one of the trace up-to fluctuations within the range σ:

1Obviously, in formalizing these ideas we have to be sure that the size of σ respects some size relation
with the traces times in order not to create inconsistencies in our calculations.

4

106 Towards a process-calculi approach to study the evolution of biological networks

At this point, given a set of protein species and protein domains we are interested to
observe, a BlenX system S ′ and a trace T , we can combine the two just given notions and
say that S ′ simulates trace T with precisions ǫ and σ, only if S ′ can match all the moves

of T up-to fluctuations in observations and time values within ranges ǫ and σ, respectively ;
Fig.3 gives graphical intuitions of what this relation looks like. By finding the tightest ǫ

and σ such that S ′ simulates T we can build a notion of distance (metric) between BlenX

systems and traces; this allows to compare different systems with respect to the distance
they have from a trace, given the set of observations we are interested in. This concept fits
perfectly in our evolutionary framework and can be rephrased in terms of comparing different
individuals with respect to the distance they have from an ideal behaviour, i.e., the notion
of approximated simulation can be used to compute the fitness of an individual. Tightest
is the precision of the simulation, greater is the fitness value. Obviously, since the precision
depends on two values, we can think of finding a formula that combines them (e.g. a linear
combination) allowing for the weighting of the precisions importance.

(a) (b)

Figure 3: a) Example of simulation where only a protein species is observed; b) Example of
simulation where a set of protein species is observed.

Note, anyway, that the given definition of simulation says only that in the transition sys-
tem of S ′ there exists a trajectory that match the trace up-to fluctuations, but says anything
about the probability to follow this trajectory with respect to all the possible trajectories

5

Alessandro Romanel 107

of length n in the transition system (n is the length of the trace). This is quite annoying,
because in our fitness computation we would like to consider not only that a system almost
simulates an ideal behaviour, but also that the simulation is not a rare event. In order to
obtain this, the idea is to use the previous definition of simulation and compute the proba-
bility p that a system S ′ has to generate a trajectory that simulates T with given precisions
ǫ and σ. Also in this case we can develop a notion of distance between systems and traces
by combining not only precision values, but also the probability p; the idea is to find the
tightest ǫ and σ and at the same time maximize p. Like before, we want a combination that
allows weighting the three parameters. Note that by giving a weight zero to the probability
value we should be able to recover the previous approximated simulation definition.

Although useful as a starting point to develop a theoretical framework for fitness com-
putation, we think that this approach represents also a first step towards the achievement
of certain kind of description of neutrality [9] in terms of some process-algebraic definition
of functional or behavioural simulation or equivalence meaningful in the biological domain.
This will clearly be of help in applying concurrency theory to study evolutionary robustness
and evolvability, concepts recently recognized as crucial to the understanding of evolution
[9]. We want to finish by mentioning a different process-calculi based work presented in [7],
which aims to combine a variant of π-calculus, the continues π-calculus, and model-checking
techniques as an approach to study robustness and evolvability of biological networks.

References

[1] M. Backes. Quantifying probabilistic information flow in computational reactive systems. In LNCS,
editor, Eur. Symp. on Research in Computer Security, volume 3679, page 336354, 2005.

[2] C. Baier, J.P. Katoen, and H. Hermanns. Approximate symbolic model checking of continuous time
markov chains. In LNCS, editor, Conf. on Concurrency Theory, volume 1664, page 146162, 1999.

[3] L. Dematté, C. Priami, and A. Romanel. The Beta Workbench: a computational tool to study the
dynamics of biological systems. Brief. Bioinform., 9(5):437–449, 2008.

[4] L. Dematté, C. Priami, and A. Romanel. The BlenX Language: A Tutorial. In LNCS, editor, SFM 2008,
pages 313–365. Springer-Verlag, 2008.

[5] L. Dematté, C. Priami, A. Romanel, and O. Soyer. Evolving BlenX programs to simulate the evolution
of biological networks. Theor. Comput. Sci., 408(1):83–96, 2008.

[6] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. The metric analogue of weak bisimulation
for probabilistic processes. In Symp. on Logic in Computer Science, volume 413422, 2002.

[7] M. Kwiatkowski and I. Stark. The continuous pi-calculus: A process algebra for biochemical modelling.
In CMSB, pages 103–122, 2008.

[8] F. van Breugel, C. Hermida, M. Makkai, and J. Worrell. An accessible approach to behavioural pseu-
dometrics. In LNCS, editor, Colloquium on Automata, Languages, and Programming, volume 3580,
2005.

[9] A. Wagner. Robustness and Evolvability in Living Systems (Princeton Studies in Complexity). Princeton
University Press, August 2005.

6

108 Towards a process-calculi approach to study the evolution of biological networks

Spatial extension of stochastic π calculus

Anton Stefanek Maria G. Vigliotti Jeremy T. Bradley

Department of Computing, Imperial College London

{as1005|mgv98|jb}@doc.ic.ac.uk

August 18, 2009

Abstract

We introduce a spatial extension of stochastic π-calculus that provides a formalism to
model systems of discrete, connected locations. We define the extended stochastic semantics
and also give deterministic semantics in terms of a system of ordinary differential equations.
We describe two simple examples, one based on a standard epidemic model and one modelling
resistance in plant tissues.

1 Introduction

Stochastic process algebras are becoming increasingly important in Systems Biology. Several
frameworks have been developed (such as Bio-PEPA [6]) that allow convenient description of the
models and different ways of formal analysis. Moreover, SPAs are naturally suited for extensions
– for example in [5] Bio-PEPA is extended with spatial descriptions, a very important feature for
modelling of various biological systems.

Stochastic π-calculus is a SPA that has been successfully applied to modelling in Systems
Biology [4, 3, 16, 10]. This gives a motivation for its further extensions. We introduce certain
spatial features to stochastic π-calculus. This has been done to some extent in the Bio-Ambient
calculus [15]. However, our aim is to provide an extension that would allow a definition of an
alternative, deterministic and continuous, semantics (it is not clear to us how this could be done
for the Bio-Ambient calculus). In this work we will first remind the reader of the stochastic π-
calculus and provide a definition of the deterministic semantics, based on the continuous π-calculus
[11] and PEPA [9]. Then we introduce a spatial extension Lπ that allows modelling of discrete,
connected locations and show how it keeps both the stochastic and deterministic semantics. We
illustrate our ideas on two examples, one a standard epidemic model and another from plant
physiology.

2 Stochastic π calculus

We will use a formalism (shortened to Sπ) based on the standard stochastic π-calculus, as described
in [14].

The basic primitives of Sπ are processes that communicate over channels or evolve indepen-
dently. Communication happens via actions. On a channel a, a process can perform an output
action !a, possibly involving transmission of a message, !a〈ψ̃〉 (where ψ̃ is a vector of variables and
channel names). On the other hand, a process can perform an input action ?a, possibly receiving
a message, ?a(x̃) (where x̃ is a vector of variables which become bound by the values in the re-
ceived message). Each channel has an associated constant rate, which corresponds to the rate of
communication over that channel. To evolve independently, a process can perform a silent action
τ@r at a specified rate r.

To summarize, the actions are

α =!a \ ?a \ !a〈ψ̃〉 \ ?a(x̃) \ τ@r.

The processes are built inductively from actions and the basic zero process 0 not capable
of any action. A continuation is a process of the form α.P (where P is a process), capable of
performing an action α and thereby evolving into the process P . A summation

∑
i∈I αi.Pi is a

109

process with multiple such capabilities. A process P |Q is a parallel composition of two processes
P,Q that can communicate together. The restriction operator ’new’ ensures that the channels
in the set ϕ are private to the restriction process (newϕ)P , unless sent to another process via
channel communication. Finally, for a more convenient modelling and, more importantly, to allow
recursion, a process identifier instance can be used in place of a process it defines, possibly with
some parameters, A〈ψ̃〉.

To summarize, the set of processes of Sπ (denoted by P) contains

P,Q = 0 \
∑
i∈I

αi.Pi \ P |Q \ (newϕ)P \ A〈ψ̃〉.

The binding between identifiers and the processes they define is specified in an environment, a
collection of defining equations of the form

A(ψ̃) def= P.

An environment E together with an initial process S form a system of Sπ – a complete description
of the underlying model.

For an example, consider a simple epidemic model. Due to a disease, a population can be
divided into three types of individuals – susceptible, infected and recovered. A susceptible individual
can catch the disease when meeting an infected one, who can also recover from the disease after a
period of time. We can take the environment ESIR consisting of the equations

S def=?i.I,

I def=!i.I + τ@rrec.R,

R def= 0

representing the three different types of individuals and specifying their behaviour. The com-
munication on the channel i between the processes I and S corresponds to the transmission of
the disease from an infected to a susceptible individual and the silent transition from a process
I to the process R corresponds to the recovery of an infected individual. The population can be
represented by an initial process of the form s× S |i× I |r × R (where n× P is a shorthand for a
parallel composition of p copies of P).

2.1 Stochastic semantics

Traditionally, stochastic π-calculus has a discrete, stochastic semantics [14], given in the form of
a continuous time Markov chain (CTMC). The states of the CTMC correspond to the processes
and the transition rates are obtained from the rates associated to the channels and the rates of
the silent actions according to rules defined on the structure of processes. Parallel compositions
are capable of the same actions as their components. Those can can evolve independently or
communicate on channels. If two processes capable of complementary actions (input and output)
on the same channel are in a parallel composition, they evolve together with rate corresponding
to the rate of the channel. If the process performing output action also sends a channel name
coming from a restriction, the other process is put under the same restriction. Identifier instances
are treated as the processes they define.

Unlike for some of the other SPAs, such as PEPA, the CTMCs arising from Sπ models can have
an infinite state space (products of continuations can be parallel compositions) and so the only
standard method of analysis is the stochastic simulation using a variant of the Gillespie algorithm
[8]. The efficiency of this algorithm can be improved by aggregating identical processes within
parallel compositions (using properties of the structural congruence for Sπ) and hence making the
complexity independent of individual process populations. The aggregation also shows that Sπ
naturally obeys the law of mass action - it can be shown that the rate of communication between
two processes depends on the product of their populations. See [17] for details.

110 Spatial extension of the stochastic Pi Calculus

2.2 Deterministic semantics

A recent trend in SPAs is to provide an alternative continuous semantics that serves as a deter-
ministic approximation to the underlying CTMC, [9, 1, 11]. This has been done for an extension
of the stochastic π-calculus, the continuous π-calculus, in [11]. We will employ a style more similar
to the case of PEPA [9].

In the deterministic semantics, populations of processes are approximated by real valued func-
tions over time that are mutually related via a system of ordinary differential equations (ODEs).
For Sπ, similarly to [11], we can define a notion of a prime process – a process that cannot be split
into a parallel composition of non-zero processes – and show that each process (corresponding to
a state in the CTMC) can be uniquely expressed as (is structurally congruent to) a parallel com-
position of prime processes. Then we can define for each prime process P a real valued function
[P] giving the population (its approximation) of P over time. To obtain the system of ODEs,
we look at the possible ways the population of P can increase and decrease in a short period of
time. It can increase as a result of a communication between two prime processes R, T or as a
result of a silent transition of some prime process Q. On the other hand, it can decrease due to
communication between P and another prime process Q or a silent transition of P .

P

Q R|T

τ@r a

τ@q ·|U on b Exit

Enter

We can keep track of these possibilities together with their multiplicities (for example τ@r.(P |P)
increases the population of P by two) in form of Enter and Exit multisets and define the system
of ODEs of a system (S,E) as consisting of the following, for each reachable prime process P :

d[P]
dt

=
∑

(r,Q)∈Enterτ,S,E(P)

r · [Q](t) +
∑

(a,R,T)∈Enterch,S,E(P)

ra · [R](t)[T](t)

∑
q∈Exitτ,S,E(P)

q · [P](t)−
∑

(b,U)∈Exitch,S,E(P)

rb · [P](t)[U](t).

The initial values of the functions [P] are given by the populations of P in the initial process
S. This system of ODEs can then be numerically solved to give an approximation of process
populations over time.

For the epidemic example, we get the following system of ODEs

d[S]/dt = −ri · [S](t)[I](t),
d[I]/dt = ri · [S](t)[I](t)− rrec · [I](t),
d[R]/dt = rrec · [I](t).

with initial values given by s, i and r in s× S |i× I |r × R. See Figure 1 for a numerical solution
of this system and a comparison with a sample stochastic simulation.

Unfortunately, the set of ODEs from the deterministic semantics of a Sπ system does not
necessarily have to be finite. The interplay between the recursion and restriction can potentially
result in an arbitrary number of newly created channels that are “connected” in arbitrary many
different ways and thus form an arbitrary number of prime processes and the corresponding real
valued functions. This is one of the distinctive features of stochastic π-calculus and has been used
to model similar structures in nature, such as polymerization of actin filaments in [3]. However,
most of the stochastic π-calculus models from the literature do not require such features (see [12]
for a collection of some of them) – it makes sense to provide a characterization that will ensure a
finite set of ODEs. A very crude solution is to restrict the stochastic π-calculus to the Chemical

Anton Stefanek, Maria Grazia Vigliotti and Jeremy Bradley 111

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160 180 200

System

S
I

R

(a) Stochastic simulation

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160 180 200

System

S
I

R

(b) ODE solution

Figure 1: A simple epidemic example. Comparison of the stochastic simulation of the CTMC from
the discrete semantics and a numerical solution to the ODEs from the continuous semantics.

Ground Form (CGF) – a subset excluding the restriction operator and action parameters. We
can show that this ensures finiteness of the resulting set of ODEs. This agrees with [2], where the
author provides a translation of models in CGF to ODEs via chemical equations.

Finally, most of the models in [12] are in CGF or can be translated into “equivalent” ones in
CGF (see [17] for some examples). This allows comparison of the two semantics and therefore
further investigation into their relationship, with the possibility of formal limit results such as for
PEPA [7].

3 Spatial extension – Lπ

We can now define a simple spatial extension of Sπ which we will call Lπ. We aim for a minimal
extension that can provide a basis for further improvements. Considering applications in biology,
we focus on discrete compartments between which the processes can move. The Bio-Ambient
calculus [15] models this to a certain extent, but additionally allows dynamics of the compartmental
structure. Albeit suitable for some applications (e.g. membrane modelling), we believe that it
would not be straightforward to maintain the deterministic semantics of such extension – we
therefore consider compartments with fixed structure. This can be justified by the fact that the
current knowledge about biological systems is limited and the existing models mainly describe
fixed compartments (as is argued in [5] where a similar extension is provided for Bio-PEPA).

3.1 Location graphs

We can argue that in case the compartments are non-overlapping (but possibly nested), their
structure can be represented by a graph – the vertices represent the compartments and the edges
represent how the processes (molecules, proteins, etc.) can move between them. This will form the
basis of our extension. We define location graphs that give the structure of the locations (by which
we mean generalized “compartments”, not necessarily having physical boundaries). Inside each
location, there are Sπ processes that can independently evolve, with rates affected by the locations
volume. Moreover, these processes are allowed to move between the locations, with rate given by
the location graph. We also assume that communication can happen only between processes inside
the same location.

Formally, location graphs are of the form

[l1 : P1, . . . , ln : Pn]v,m

where L = {l1, . . . , ln} is the set of location names, Pi are Sπ processes, v : L → R is a volume
function assigning a fixed volume to each location and m : P ×L×L→ R is a movement function

112 Spatial extension of the stochastic Pi Calculus

giving the rate of movement of processes between pairs of locations. A system of Lπ consists of
an environment and a location graph.

Returning to the epidemic example, we can be interested in a system with a quarantine where
the infected individuals get placed after a period of time and are kept until they recover. We can
model this with a location graph with two locations, one corresponding to the original “world” (say
a) and the other to the quarantine (say b), with processes coming from the original environment.
There are two possible movements in this model – of I processes from a to b and of R processes
from b to a. The rate of the first, say rdiagnose can correspond to how fast an infected individual
gets diagnosed and the rate of the second, say rrecover to how long it takes to verify a recovery.
Therefore we take m(I , a, b) = rdiagnose and m(R, b, a) = rrecover and m(P, l1, l2) = 0 for all the
other processes P and locations l1, l2. We can ignore the location volume and set v(a) = v(b) = 1.
As the initial location graph we can take (starting with an empty quarantine)

G = [a : s× S |i× I |r × R, b : 0]v,m

and get a system of Lπ (ESIR, G).

3.2 Stochastic semantics

The stochastic semantics of Lπ is an extension of the stochastic semantics of Sπ. Each state of the
CTMC is a location graph. The transitions can be either internal to a single location or correspond
to a movement between locations. In an internal transition, the processes inside a location l can
communicate or evolve independently in the same way as in Sπ, resulting in a transition to a
location graph with only the contents of l changed accordingly. The rate is potentially affected
by the volume of l – mimicking the chemistry, the rate of communication should be inversely
proportional to the volume of l. Therefore the original Sπ rate gets divided by v(l) in case it
corresponds to a communication transition.

In the movement transition, a process P “moves” between two locations. If the process in
l1 contains P in a parallel composition and the movement function allows the movement of P
between l1 and another location l2, i.e. m(P, l1, l2) 6= 0, then there is a possible transition to a
graph with only locations l1 and l2 changed, where P is removed from the parallel composition in
l1 and added to the parallel composition in l2. Ideally, we would only allow the movement of prime
processes. However, the movement of restrictions would require more complicated semantics in
order to respect the structural congruence. Therefore only summations and identifier instances
defining summations can have a non-zero movement function. This can be further extended if
suitable models that need movement of restrictions (complexes) are described.

The aggregation results and hence the efficient Gillespie algorithm from Sπ can be re-formulated
for Lπ in an obvious way.

3.3 Deterministic semantics

The deterministic semantics of Lπ is an obvious extension. By the properties of Sπ, the process
in each location can be uniquely expressed as a parallel composition of prime processes. Therefore
we can take a real valued function [P]l for each process P and location l. Population of a process
P in each location l can change due to an internal transition – the corresponding terms in the
resulting ODE are the same – and due to movement of P to and from l.

Anton Stefanek, Maria Grazia Vigliotti and Jeremy Bradley 113

P in l

Q in l

R|T in l

move from j

τ@r
a

τ@q
·|U
on b in l

m(j, l, P)

move to k Exit

Enter

The Enter and Exit multisets can be constructed in a similar way to Sπ, with the difference
that we need to consider the movement in the set of all reachable prime processes. This then leads
to an ODE for each real valued function [P]l:

d[P]l
dt

=
∑

(r,Q)∈Enterτ,S,E(P)

r[Q]l(t) +
∑

(a,R,T)∈Enterch,S,E(P)

ra[R]l(t)[T]l(t)/v(l)

−
∑

q∈Exitτ,S,E(P)

q[P]l(t)−
∑

(a,U)∈Exitch,S,E(P)

rb[P]l(t)[U]l(t)/v(l)

+
∑

m(j,l,P)6=0

m(j, l, P)[P]j(t)−
∑

m(l,k,P) 6=0

m(l, k, P)[P]l(t)

For the epidemic example we get real valued functions [S]a, [I]a, [R]a, [I]b, [R]b (we ignore [S]b
as, due to the definition of m, it clearly stays constant zero all the time). See Figure 2 for a
numerical solution to the extended set of ODEs and a comparison with a sample simulation.

We will look at a simplified example from plant physiology [18]. Consider a hypothetical plant
tissue consisting of cells arranged in a two dimensional grid. A cell can be attacked by a virus.
A hypothesis is that in this case, it sends out a signal to the neighbouring cells, which in turn
become more resistant to the virus and thus eventually prevent its spreading to the whole tissue.
We will show how Lπ can be used to model this situation and so to carry out experiments in-silico
to confirm the hypothesis.

Our location graph will represent the structure of the tissue – we take a grid with only adjacent
nodes connected. Each location will correspond to a cell – initially, it will contain a Cell process.
The Virus process will be able to attack a cell when in the same location. In that case, the
cell releases warnings to the neighbouring cells – it will create several Warning processes, that are
allowed to move to the neighbouring locations – and starts fighting the virus. The life of the cell will
be represented by the process Life and the resistance against the virus by the Resistance processes.
The resistance processes will be able to attack the virus (output action on the channel defeat),
while the virus attacks the life of the cell (output action on the channel fight) – the likelihood of
the cell surviving therefore depends on the number of resistance processes it releases. When the
virus wins, the cell gets defeated and the virus multiplies, otherwise a resistance process destroys
the virus and notifies the cell (output action on the channel defeated) which then switches back to
the normal state (but with resistance to the virus). When a cell gets warned (communicates with
a warning process), it switches to the resistant state (the process RCell), which is identical to the
Cell with the difference that it releases more Resistance processes.

114 Spatial extension of the stochastic Pi Calculus

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160 180 200

SystemQ:a

S
I

R

(a) Simulation: location a

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180 200

SystemQ:b

S
I

R

(b) Simulation: location b

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160 180 200

SystemQ:a

S
I

R

(c) ODE solution: location a

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120 140 160 180 200

SystemQ:b

S
I

R

(d) ODE solution: location b

Figure 2:

To model this behaviour we take an environment consisting of the defining equations

Cell =?attack .(Life|6× Reistance|4×Warning)+?warn.RCell ,
RCell =?attack .(Life|20× Reistance|4×Warning)+?warn.RCell ,

Resistance =!defeat .!defeated + delay@expire,
Life =?fight+?defeated .RCell ,

Virus =!attack .(!fight .(2×Virus)+?defeat).

To model the tissue structure, we take a location graph which can be drawn as the following:

c0,0 : Cell c0,1 : Cell c0,2 : Cell c0,3 : Cell

c1,0 : Cell c1,1 : Cell |Virus c1,2 : Cell c1,3 : Cell

c2,0 : Cell c2,1 : Cell c2,2 : Cell c2,3 : Cell

c3,0 : Cell c3,1 : Cell c3,2 : Cell c3,3 : Cell

The volume of all locations is a constant 1 and the Warning and Virus processes are allowed to
move on the edges. See Figure 3 for a sample simulation of this Lπ system.

Anton Stefanek, Maria Grazia Vigliotti and Jeremy Bradley 115

Cell RCell Virus

(a) Virus contained

Cell RCell Virus

(b) Virus spreading

Figure 3: Sample simulation of the plant patogen model. Each cell in the grid represents time
evolution of the corresponding compartment. The system starts with the virus in the location
c1,1. Figure (a) shows an example of a simulation where the virus is contained after attacking
the neighbouring cells of c1,1. Figure (b) shows a simulation where the virus spreads to the
neighbouring cells and survives.

4 Conclusion and Further work

We introduced Lπ, an extension of stochastic π-calculus that provides basic features for modelling
systems of discrete, connected locations. To support this formalism, we developed a tool JSPiM
(to be released in due time, see [17] for details of the implementation) that allows simulation and
ODE generation and numerical solution of Sπ and Lπ models. Written in Java, it also serves as
an alternative to the existing stochastic π-calculus tool SPiM [13]. We hope that with the help
of this tool, more realistic examples from biology can be proposed, thus verifying the suitability
of Lπ and giving direction for possible extensions. These could include the already mentioned
movement of restrictions (usually representing chemical complexes). A syntactical extension of
Lπ providing constructs for active movement could also prove useful – for example in the plant
tissue model, the warning cells released would be each directed to a different neighbouring location
instead of just allowed to randomly move.

A more ambitious task would be to relate Lπ to reaction-diffusion systems and work towards
a formalism that would model the space continuously.

References

[1] L. Bortolussi and A. Policriti. Stochastic concurrent constraint programming and differential
equations. Electr. Notes Theor. Comput. Sci., 190(3):27–42, 2007.

[2] L. Cardelli. From processes to odes by chemistry. In IFIP TCS, 2008.

[3] L. Cardelli, E. Caron, P. Gardner, O. Kahramanoğulları, and A. Phillips. A process model
of actin polymerisation. In N. Cannata, E. Merelli, and I. Ulidowski, editors, Proceedings of
the Workshop ”From Biology To Concurrency and back (FBTC 2008)”, July 2008, volume
229 of Electronic Notes in Theoretical Computer Science, pages 127–144, Reykjavik, Iceland,
2008. Elsevier.

[4] L. Cardelli, P. Gardner, and O. Kahramanoğulları. A process model of rho gtp-binding
proteins in the context of phagocytosis. Electron. Notes Theor. Comput. Sci., 194(3):87–102,
2008.

[5] F. Ciocchetta and M. L. Guerriero. Modelling biological compartments in bio-pepa. Electron.
Notes Theor. Comput. Sci., 227:77–95, 2009.

[6] F. Ciocchetta and J. Hillston. Bio-pepa: a framework for the modelling and analysis of
biological systems, 2008. Theoretical Computer Science.

116 Spatial extension of the stochastic Pi Calculus

[7] N. Geisweiller, J. Hillston, and M. Stenico. Relating continuous and discrete PEPA models
of signalling pathways. Theor. Comput. Sci., 404(1-2):97–111, 2008.

[8] D. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of
Physical Chemistry, 81(25):2340–2361, 1977.

[9] J. Hillston. Fluid flow approximation of PEPA models. In Proceedings of the Second Inter-
national Conference on the Quantitative Evaluation of Systems, pages 33–43, Torino, Italy,
Sept. 2005. IEEE Computer Society Press.

[10] C. Kuttler and J. Niehren. Gene regulation in the pi calculus: simulating cooperativity at
the lambda switch. Transactions on Computational Systems Biology VII, 4230:24–55, 2006.

[11] M. Kwiatkowski and I. Stark. The continuous π-calculus: A process algebra for biochemical
modelling. In Computational Methods in Systems Biology: Process of the Sixth International
Conference CMSB 2008, number 5307 in Lecture Notes in Computer Science, pages 103–122.
Springer-Verlag, 2008.

[12] A. Phillips. Examples in spim. http://research.microsoft.com/en-us/projects/spim/
examples.pdf.

[13] A. Phillips and L. Cardelli. Efficient, correct simulation of biological processes in stochastic
π-calculus. Proceedings of Computational Methods in Systems Biology, pages 184–199, 2007.

[14] C. Priami. Stochastic π-calculus. The Computer Journal, 38(7), 1995.

[15] A. Regev, E. Panina, W. Silverman, L. Cardelli, and E. Shapiro. Bioambients: An abstraction
for biological compartments. Theoretical Computer Science, Special Issue on Computational
Methods in Systems Biology, 325(1):141–167, 2004.

[16] N. Segata and E. Blanzieri. Stochastic pi-calculus modelling of multisite phosphorylation
based signalling: The pho pathway in sccharomyces cerevisiae. Lecture Notes in Computer
Science, 2008.

[17] A. Stefanek. Continuous and spatial extension of stochastic π-calculus. Master’s thesis,
Imperial College of Science, Technology and Medicine, 2009.

[18] L. Taiz and E. Zeiger. Plant Physiology. Sinauer Associates, 2006.

Anton Stefanek, Maria Grazia Vigliotti and Jeremy Bradley 117

How restrictive is the current action decomposition
property for compression bisimulation?

Vashti Galpin
LFCS, School of Informatics

University of Edinburgh
Vashti.Galpin@ed.ac.uk

Bio-PEPA is a stochastic process algebra for modelling biological systems. Semantic equivalences
such as bisimulation are defined for process algebras and allow for the comparison of different mod-
els with respect to their behaviour. A question of interest is what semantic equivalences are useful
in systems biology modelling. There are three approaches that can be taken in answering this ques-
tion. First, one can consider the existing equivalences used in computer science and second, one can
develop equivalences based on what biologists view as equivalent behaviour. The third approach in-
volves considering two systems that we expect to have the same behaviour and use that as the basis
for an equivalence. This approach has been successfully applied to Bio-PEPA to define compression
bisimulation.

Bio-PEPA avoids the state space explosion in two ways: by allowing analysis based on ordinary dif-
ferential equations and by discretising the concentrations of species. In the second case, we can use
different step sizes to obtain different discretisations of the same Bio-PEPA model. Even though these
models have different discretisations, we expect them to have the same behaviour and it is possi-
ble to construct an equivalence that identifies two different discretisations of the same model. This
equivalence is called compression bisimulation (Galpin and Hillston, Discretisation and equivalence
in Bio-PEPA, to appear in Proceedings of CMSB 2009) and is qualitative in that it only considers re-
action names and not reaction rates.

Compression bisimulation involves equivalence classes of states in the labelled transition system ob-
tained from the Bio-PEPA model. States are considered equivalent if they have the same reactions
available. Transitions are then generated between classes of states from the transitions of the labelled
transition system, creating a new transition system. Classical bisimulation as defined by Milner is
then used to determine if the new transitions systems obtained for each discretisation have the same
behaviour.

It is possible to show that two discretisations of a single species are compression bisimilar without any
restrictive conditions. However, when showing that compression bisimulation is a congruence with
respect to the synchronisation operator, a condition called the current action decomposition property
(CADP) is currently required. This property requires that if we have two Bio-PEPA models P1 BC

L
Q1

and P2 BC
L

Q2 that are both derived from the same Bio-PEPA model P BC
L

Q and which both have the
same reactions available, that P1 and P2 have the same reactions available and Q1 and Q2 have the
same reactions available.

The investigations of this property have shown so far that for a reaction α 6∈ L there are two basic cases
where CADP does not hold and for α ∈ L there are two basic cases where CADP does not hold. The
first two cases are easy to exclude from consideration since they are not reasonable Bio-PEPA models.
In these cases, we can show that α appears in P and in Q but we know that α 6∈ L. For P BC

L
Q to be

a reasonable representation of a biological system, any shared reaction should be in L. For the cases
with α ∈ L, there are a number of avenues to consider including the role of creation and degradation
reactions, and whether a Bio-PEPA model is fully expressible. These points will be elucidated during
the presentation. This is work in progress.

1

119

An Overview of the Bio-PEPA Eclipse Plug-in

Adam Duguid

The School of Informatics, Laboratory of Computer Science, The University of
Edinburgh a.j.duguid@sms.ed.ac.uk

Abstract. Tool support for any modelling language is vital if the lan-
guage is to be used. Bio-PEPA is a relatively new language designed for
the modelling of biological systems, with tool support for the Bio-PEPA
language under development. Here we present the syntax allowed by the
current version of the Bio-PEPA Eclipse Plug-in and give a brief overview
of the features present within the plugin. The purpose of the paper is
to serve as the initial documentation until a more complete manual is
written.

1 Introduction

Bio-PEPA [1] is a process algebra designed for the modelling of biological sys-
tems and has been used to model a wide range of systems including circadian
clocks [2], signalling pathways [3, 4] and genetic networks [5]. The modelling
of these systems was made possible through the development of tools for the
Bio-PEPA language.

Currently there exist two main tools for working with Bio-PEPA models, the
Bio-PEPA Workbench and the Bio-PEPA Eclipse Plug-in. While both are under
active development, they each serve a particular role. The Bio-PEPA Workbench
is a prototype tool for introducing new language features and types of analysis;
the Bio-PEPA Eclipse Plug-in is an environment intended to target end-users
wishing to model in Bio-PEPA. The recent release of version 0.1.0 of the plug-in
includes several key improvements, including support for the Bio-PEPA locations
extension [6] and an improved syntax. With these changes it becomes important
to document the new syntax if the tool is to be used. The paper will cover the
Bio-PEPA language followed by a brief overview of the plug-in.

2 The Bio-PEPA Language

A biological system can be encoded as a Bio-PEPA model by way of a 6-tuple
〈V,N ,K,FR, Comp, P 〉, where:

– V is the set of locations
– N is the set of species attributes
– K is the set of parameter definitions
– FR is the set of functional rates

121

– Comp is the set of species components
– P is the model component

Each of these sets results in a separate type of definition. For the description
of the Bio-PEPA Eclipse Plug-in syntax, the following formatting will be applied:
keywords will be typeset using typewriter and variable names and values in
italics. Optional parts to the definition will be indicated by the use of angular
brackets (〈 〉). Where applicable, lists of possible tokens will use the curly brace
({ }) or in the case for more complex expressions be separated by a vertical
line (|).

Legal identifiers (IDs) in Bio-PEPA follow the requirements for naming of
variables in Java. The first character must be either an alphabetical character
or an underscore () and subsequent characters may be alpha-numerics or the
underscore character. In models with multiple compartments the naming con-
vention for species is slightly more complicated, with different representations
allowed in different places.

speciesID Referring to just the species identifier is seen as a global reference.
If a species can exist in three locations and a reaction is stated in terms of
the species then the reaction is assumed to be defined as occurring in all
three locations independently of each other.

speciesID@locationID This allows a reference to a specific species in a specific
location. If a reaction is defined in this manner it will not be enabled in other
locations that the species can exist in.

speciesID@locID1,. . . ,locIDn If a reference to a species in more than one lo-
cation, but not all, is required then a comma delimited list can be used. This
allows fine-grained control over where the definition in question is applicable.

From herein, where a species identifier is expected it shall be referred to as a
speciesID and the legal forms will be explicitly stated.

To aid in the description of the different parts of a Bio-PEPA model, the
following model shall be used as a running example. Fig. 1 shows a simple
Bio-PEPA model of a Michaelis-Menten reaction. The model describes a sin-
gle compartment where all the species reside along with three parameters, two
required to describe a reaction using Michaelis-Menten kinetics and the third for
the conversion of species P back into species S. The actual reactions are labelled
as alpha and beta and the model also contains definitions for the three species
required for the reactions to occur. The different parts of A Bio-PEPA model
will now described in the order as seen in the 6-tuple.

Lastly, to avoid the repetition throughout the different definitions, it should
be noted that all definitions, with the exception of the model component, are
terminated by the use of the semi-colon (;). This particular convention follows
on from PEPA.

2.1 Locations

Each location must encode an identifier, the parent location, the size of the
location (s ∈ R), the type the location represents (kind) and the step-size (H ∈

122 An overview of the Bio-PEPA Eclipse Plug-in

// Locations
location main : size = 1, type = compartment;

// Parameters
v M = 1.0;
K M = 1.0;
r 1 = v M * 0.1;

// Functional rates
kineticLawOf alpha : fMM(v M, K M);
kineticLawOf beta : r 1 * P@main;

// Species components
S = (alpha, 1) << S + beta >> S;
P = alpha >> P@main + beta << P;
E = alpha (+) E;

// Labelled composition definition
pathway ::= S@main[1000] <*> P@main[0];
// Model component
pathway <alpha> E@main[100]

Fig. 1. Bio-PEPA Michaelis-Menten example.

N∗) for the location. As with all identifiers in a Bio-PEPA model, the identifier
must be unique to the model. The parent identifier allows the generation of
the location tree, where the mapping is one parent to many children and the
parent should be seen to envelope the entire of the child or children. The type
(or kind) of location can be any from the set of {membrane, compartment} and
it is assumed that a membrane will act as the parent to a single compartment.

The concrete syntax, as accepted by the plug-in is as follows:

location ID 〈in parentID〉 : size = value 〈, step-size = value〉
〈, type = {membrane,compartment}〉;

Here we can see that the keyword location labels the purpose of this defi-
nition. The keyword must be proceeded by the ID for this new location. If the
model defines multiple locations, the spacial location can be specified by adding
the keyword in and the ID for the parent. By defining just the parent, the lo-
cation tree can be generated by the parser. A colon is then used to separate
the identifier (and the relative location if defined) from the properties of this
definition, where multiple properties are comma separated. In the case of a lo-
cation the size is the only required property (where value ∈ R) while the type
remains optional as it defaults to compartment. The step-size (value ∈ N∗)
is only required if performing analysis of a Bio-PEPA model with levels, with

Adam Duguid 123

more detail below. The definition is then terminated by the use of the semicolon
as previously stated.

If no locations are defined the default location is used, which is equivalent
to that seen in Fig. 1, a compartment labelled main with size equal to one (if
required by the solver in question). The location definition in Fig. 1 could also
have been written without the type property being set due to compartment being
the default.

2.2 Species Attributes

The purpose of the species attributes definition is closely connected to the model
component definition, as will be described later. The model component contains
the information regarding population counts of the different species which, while
sufficient for time-series analysis using others Ordinary Differential Equations
(ODEs) or Stochastic Simulation Algorithms (SSAs) , does not allow analysis
by Continuous Time Markov Chains (CTMCs) . For CTMC analysis the model
must be bounded, requiring upper limits as to expected population counts. In
connection with the step size of a specie’s location this will allow the tool to
calculate the number of levels to allow analysis by levels, the approach used
in [4]. To keep the model component syntax as simple and clean as possible,
this additional information is recorded in a species attribute definition. As the
only supplementary information currently allowed pertains to CTMC analysis
the entire definition is optional. Indeed, as of the current version of the Eclipse
Plug-in (version 0.1.0) CTMC analysis is not possible so the definition is intended
more for future use. Expected usage of the definition will include solving the
CTMC, with packages such as the Matrix Toolkit for Java (MTJ) [7] or to allow
exporting of the model into other tools such as PRISM [8]. Whilst the purpose
of the current form is similar to that of the original definition [1], much of what
was encoded has been removed due to redundancy in the information or because
a more apt location has been utilised.

The concrete syntax, as accepted by the plug-in is as follows:

species speciesID : upper = value〈, lower = value〉;

As can be seen, if the definition is used, the only required attribute is the
upper bound (value ∈ N∗) as the default lower bound is the value zero. If an
improved lower bound is known then it can also be specified (value ∈ N∗). In
regards to the species identifier, any of the different forms can be used. It should
be noted though that if the definition is required i.e. for any form of CTMC
analysis, then the bounds must be specified for every species in every location
it exists in.

2.3 Parameter Definitions

Parameter definitions, being a staple part of every language, require little in the
way of explanation and is not different here. The concrete syntax, as accepted

124 An overview of the Bio-PEPA Eclipse Plug-in

by the plug-in is as follows:

ID = expression;

where

expression = int | float | ID | speciesID | (expr) | expr + expr |
expr − expr | expr/expr | expr ∗ expr | ln(expr)

As can be seen, an expression is any standard mathematical expression with
the definition structured as it is because of the recursive nature of the expres-
sion (expr simply being an abbreviation for expression, and not a different set of
allowable expressions). These expressions can reference other parameters, loca-
tions (size) and species (population counts) by their respective identifiers, where
speciesID must refer to a species in a single location if multiple locations are
specified. The ability to use functions is also present, with support growing as
required. As of version 0.1.0 of the plug-in, support is limited to ln, while the
next release will include others such as the floor and ceiling functions. Stan-
dard infix operators are present with the exception of the exponentiation (to be
present in the next release). It should be made clear that any parameter that
refers to a dynamic component e.g. a species is itself labelled dynamic for the
purposes of compiling out static expressions. So in Fig. 1 the parameter r 1 will
be evaluated at compile time to avoid needless recomputation during every step.

2.4 Functional Rates

One of the key differences between PEPA and Bio-PEPA is the use of functional
rates and how they are handled. In PEPA the action name has no rate attached
to it, merely acting as a label for identifying transitions. Instead the rate was
part of the prefix operator, with the overall rate for any given action never
explicitly defined. In Bio-PEPA the rate is explicitly defined within the model
and attached to the name.

The concrete syntax, as accepted by the plug-in is as follows:

kineticLawOf ID : expression ′;

where expression extends the previous expression statement to also include pre-
defined kinetic rates as shown here.

expression ′ = expression | fMA(expr) | fMM(expr, expr)

The functional rates, like locations, are clearly labelled through the use of
the keyword kineticLawOf which is followed by its identifier. Following the syn-
tax of the locations, the colon is used as the separator between the identifier
and it’s rate. As stated, legal expressions include all those allowed in the pa-
rameter definitions along with additional functions specific to commonly found

Adam Duguid 125

rates in the biological domain (mass-action and Michealis-Menten (fMA, and fMM
respectively)) with the ability to add others (e.g. competitive inhibition or Hill
kinetics) later.

Briefly covering the currently available rates:

Mass-action takes one parameter, r, with the overall rate for the reaction
being the product of the rate and the population counts of all the reactants
and modifier species involved in the reaction e.g. fMA(r), where the reaction
involves species S1 and S2 interact to form S3, would equate to a rate of r×
S1 × S2 (assuming stoichiometric coefficients of one). If instead the reaction
only involved S1 as a reactant then the corresponding rate would be r× S1.
In Fig. 1, reaction beta could have been also written as fMA(r 1).

Michaelis-Menten takes two parameters, vM and KM and requires a set num-
ber of species to perform specific roles within the reaction. One species is
required to act as a reactant (S), another as the enzyme (E) and the last
as the product (P) as seen in Fig. 1. The ordering of the parameters, along
with the associated rate can be seen below.

fMM(vM ,KM) =
vM × S × E

KM + S

2.5 Species Components

The species component definition lists all the reactions a particular species is
allowed to participate in and in what role. The list of actions are separated by
the choice operator (+), behaving in an identical manner to the choice operator
in PEPA.

The concrete syntax, as accepted by the plug-in is as follows:

ID = S; (where S = action | S + S)

Where an action is defined as

action = (rateID , stoichiometry) op speciesID ; | rateID op speciesID ; |
(rateID [locationID op′ locationID], stoichiometry) (.) ID ; |
rateID [locationID op′ locationID] (.) ID ;

with op ∈ {>>,<<, (+), (−), (.)} and op′ ∈ {− >,< − >}.
The first ID refers to a species but in this particular definition is labelled as

an ID to make it distinct from the the other species identifiers expected within a
single species component definition. This identifier must take the first speciesID
form of just the species name with no location. Thus each global species can
have at most one definition, with the speciesID used to allow control over where
a particular action is permissible. The initial identifier is then followed by the
equals symbol and then a list of actions separated by the choice operator. with
each action taking one of the forms shown above. In the case of non-transport
definitions i.e. the first two in the action definition, the speciesID can take any of

126 An overview of the Bio-PEPA Eclipse Plug-in

the previously defined forms. Thus a single reaction can be defined as occurring
in the global sense for the species, in a single location or in a subset of the
locations where the species is present. The identifiers labelled rateID are normal
identifiers, but ones that must refer to a previously defined functional rate and
stoichiometry is the stoichiometric coefficient for the species in this reaction
(stoichiometry ∈ N∗).

With the operators, it is best to connect the textual representations back to
the symbols used in the original Bio-PEPA definition.

Behaviour Bio-PEPA symbol ASCII representation
reactant ↓ <<
product ↑ >>
activator ⊕ (+)
inhibitor 	 (−)
modifier � (.)
unidirectional transportation → − >
bidirectional transportation ↔ < − >

Using the example in Fig. 1, we can see the species P acts as a product in
reaction alpha, but only within location main. This clearly has no impact in the
simple example, being that there is only one defined location, but it does allow
the syntax for species in particular locations to be shown. The species P also
participates in reaction beta, this time acting as a reactant.

The example in Fig. 1 also highlights some of the abbreviations permissible
in the definition. If a statement does not specify a stoichiometric coefficient the
default value of one is used. The definition for species S shows the syntax for
including the stoichiometric coefficient and the abbreviated form for when the
stoichiometry is one, these being the first two forms shown in the action definition
above.

Transportation is one of the current features not highlighted in the running
example. Transportation represents the movement of a single species between two
adjacent locations within the model, as described in [6]. In the defined syntax
above (third and fourth action definitions) it requires two locationIDs, the first
acting as the source and the second as the target and must refer to locations
that this particular species resides in. As the locations are embedded within
the transportation action the identifier is simply the species name. The general
modifier operator is used for transportation as while the levels of the species
in the two locations change, the overall amount does not. Transportation can
either be in a single direction or in both, with an example below in the concrete
syntax.

. . . + gamma[main − > child] (.) E;

In this example, species E essentially has an additional reaction defined which
is equivalent to the following:

E@main − > E@child

Adam Duguid 127

If the transportation was defined as being bidirectional then the reverse reac-
tion would also be defined, with both occurring at rate gamma. In instances such
as these it is advisable to take care with the rates; use of the mass-action rate
kinetic would produce two rates, one where the population count of E@main is
factored in and the other which would be dependent on E@child while a custom
rate would be used as is in both directions.

2.6 Model Component

The model component is the final definition in a Bio-PEPA model, both in
terms of the building blocks to be described here and in terms of required lo-
cation within the model. Bio-PEPA imposes little ordering on the definitions
with the exception that the model component definition is the final entry. At
this point a distinction has to be made between the model component definition
and labelled compositional definitions. To offer compositionality the tool needs
to accept fragments of the model component and allow the assigning of a label
for reference. Essentially the definitions are nearly identical, with the difference
being the assignment on an identifier and the use of the termination symbol.

The concrete syntax for labelled compositional definitions, as accepted by
the plug-in is as follows:

ID ::= P ; (where P = ID | (P) | P < L > P | speciesID [value])

where

Behaviour Bio-PEPA symbol ASCII representation
cooperation BC

L
< L >

Unlike the model component, labelled compositional definitions require an
identifier for reference in the model component. The assignment symbol differs
here from other definitions, taking the form of ::= which uniquely identifies the
definition type. The compositional fragment comes next, taking one of the forms
described above. It can consist of an identifier for another labelled compositional
definition, single species or the synchronisation of several species or identifiers.
For a single species, the identifier must refer to a specific species in a specific
location (if locations are used). This limits the speciesID to one of the first
two forms as described earlier. After the species identifier comes the popula-
tion count, where value ∈ N0. Examples of this can be seen in Fig. 1, where
the identifier pathway refers to a labelled compositional definition containing
S@main[1000]

The cooperation operator represents the glue within the compositional defi-
nition, fulfilling an identical role to its counterpart in PEPA. Just as in PEPA,
the cooperation set, indicated by the symbol L, can either be the wildcard token
(∗) or a comma delimited list of actions. In Fig. 1 we can see the use of the wild-
card within the definition labelled pathway. This will cause the left and right
trees to synchronise on any common action names. In the case of the example
this would could have been expanded out to <alpha, beta>.

128 An overview of the Bio-PEPA Eclipse Plug-in

The model component follows the same syntax as the labelled compositional
definition without the assignment or the terminator symbol. Referring back to
the syntax above, the model component is simply P . In Fig. 1 the model compo-
nent is the synchronisation between the labelled compositional definition path-
way and the species E. As S and P already synchronise over alpha in the pathway
definition, this synchronisation results in a reaction involving three species.

3 The Bio-PEPA Eclipse Plug-in

The syntax covered is that of the Bio-PEPA Eclipse Plug-in, one of two tools
developed at Edinburgh University for the Bio-PEPA language. Built on top of
the Eclipse platform [9], it offers an operating system agnostic editor and suite
of time-series solvers for the construction and analysis of Bio-PEPA models. It
provides the modeller with a rich modelling environment for Bio-PEPA, from
the initial creation of the model through to the analysis and inspection of the
results.

The features currently supported in the plug-in can be roughly grouped into
those assisting the modeller in the writing of their models and features for the
analysis of the model. Examples of the former include an editor (with Bio-PEPA-
aware syntax highlighting) and static analysis of the model for detecting various
syntactic errors. For the latter, the plug-in is capable of generating and displaying
time-series results from ODE solvers or SSAs, with the option to export these
results in both graphical and textual formats. Many of these features can be seen
in Figure 2.

Once the model has been built, the plug-in parses the model and performs
static analysis to detect a variety of modelling errors. If errors are present
they are listed in the problems tab for the modeller to identify and correct.
Once free from errors, the modeller has access to ODE solvers in the form of a
Runge-Kutta implicit-explicit solver and a Dormand-Prince adaptive step-size
solver [10], these being made available through the odeToJava library. The plug-
in also supports analysis through stochastic simulators, with implementations of
Gillespie’s SSA [11], Gibson-Bruck [12] and the Tau-Leap algorithms [13] avail-
able. The ability to use different types of solvers has allowed us to discover errors
in published modelling studies in computational biology [14].

The modeller also now has the ability to export the Bio-PEPA model in
SBML format (level 2 version 3), with the hope to support other formats such
as PRISM at a later point. This allows for other modelling tools to be utilised;
in the case of SBML this allows access to applications such as COPASI or SBSI
Visual, a CSBE initiative.

Instructions for downloading the Bio-PEPA Eclipse Plug-in are available from
http://biopepa.org under Tools. From there instructions can be found for
various versions of the Eclipse platform along with the URL for downloading
the plug-in.

Adam Duguid 129

Fig. 2. Screen shot of the Bio-PEPA Eclipse Plug-in. The editor can be seen in the top
left corner, with the outline view in the top right. The problems tab (bottom right)
displays warnings and errors associated with the open models and the ability to plot
results can be seen in the bottom left.

4 Conclusions

Here we have covered the syntax for the Bio-PEPA language, hopefully in suf-
ficient detail to allow a modeller to use the plug-in. The different types of defi-
nitions have been described, detailing which parameters are required and which
are optional. Finally, a brief overview of the plug-in has been given to highlight
some of the key functionality currently present.

References

1. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis
of biological systems. Theoretical Computer Science 410(33–34) (2009) 3065–3084

2. Akman, O., Ciocchetta, F., Degasperi, A., Guerriero, M.L.: Modelling Biological
Clocks with Bio-PEPA: Stochasticity and Robustness for the Neurospora Crassa
Circadian Network. In: CMSB 2009. LNCS (2009)

3. Ciocchetta, F., Duguid, A., Guerriero, M.L.: A compartmental model of the
cAMP/PKA/MAPK pathway in Bio-PEPA. In: The 3rd Workshop on Membrane
Computing and Biologically Inspired Process Calculi, Electronic Proceedings in
Theoretical Computer Science (2009) To appear.

4. Guerriero, M.L.: Qualitative and Quantitative Analysis of a Bio-PEPA Model of
the Gp130/JAK/STAT Signalling Pathway. TCSB special issue on Computational
models for cell processes (2009)

130 An overview of the Bio-PEPA Eclipse Plug-in

5. Ciocchetta, F., Gilmore, S., Guerriero, M.L., Hillston, J.: Integrated simulation
and model-checking for the analysis of biochemical systems. Electr. Notes Theor.
Comput. Sci. 232 (2009) 17–38

6. Ciocchetta, F., Guerriero, M.L.: Modelling biological compartments in Bio-PEPA.
Electronic Notes in Theoretical Computer Science 227 (2009) 77–95

7. Heimsund, B.: Matrix toolkit for java. (http://code.google.com/p/
matrix-toolkits-java/)

8. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model
checker. In Field, T., Harrison, P.G., Bradley, J., Harder, U., eds.: Computer
Performance Evaluation: Modelling Techniques and Tools. Number 2324 in Lecture
Notes in Computer Science, London, UK, Springer (2002) 200–204

9. : Eclipse website. (http://www.eclipse.org)
10. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer-Verlag (1993)
11. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal

of Physical Chemistry 81(25) (1977) 2340–2361
12. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems

with many species and many channels. Journal of Physical Chemistry 104 (2000)
1876–1889

13. Gillespie, D.T., Petzold, L.R.: Improved leap-size selection for accelerated stochas-
tic simulation. Journal of Chemical Physics 119(16) (2003) 8229–8234

14. Calder, M., Duguid, A., Gilmore, S., Hillston, J.: Stronger computational mod-
elling of signalling pathways using both continuous and discrete-state methods.
In Priami, C., ed.: CMSB. Volume 4210 of Lecture Notes in Computer Science.,
Springer (2006) 63–77

Adam Duguid 131

Efficient compositional simulation of circadian models using
Bio-PEPA

Stephen Gilmore and Konstantinos Markakis
School of Informatics

The University of Edinburgh

August 19, 2009

Abstract

We describe a novel method of performing efficient stochastic simulation of models of biological networks
with time-dependent behaviour (such as circadian clock models). Networks are described in the Bio-PEPA
process algebra and then compiled to sets of coupled simulation models, each instantiated with different rate
parameters. These models have simpler kinetic functions than those found in a single model, allowing the
application of more efficient simulation methods.

1 Introduction
Circadian clock models are important in computational biology to help us understand how living organisms from
plants to humans react to changes in the night/day cycle. However, they are complex to simulate because of the
difficulty of encoding the switch from day to night conditions in the simulation. The phenomenon of increased
activity during daylight hours (due to higher temperature and the presence of light) is often encoded in ODE
models using a conditional construct in the kinetic laws. The intention is to write a construct of the following
form for a rate expression in a kinetic law for reaction r:

if day then kd else kn

where kd is a kinetic constant describing the rate of reaction r in the daytime and kn is a kinetic constant describing
the rate of reaction r in the nighttime. Since ODE solvers have a built-in notion of time, but not of day and night,
then the predicate day usually needs to be implemented through reference to a time variable (modulo 24 hours). If
the hours of daylight are from 6a.m. to 6p.m. the expression then becomes:

if (time%24)≥ 6∧ (time%24) < 18 then kd else kn.

Since ODE solvers and chemical kinetics simulators do not always allow conditional constructs in kinetic laws
the conditional often needs to be replaced by the use of a discontinuous θ function1 which returns 1 for true and 0
for false leading to an expression such as the following.(

θ((time%24)≥ 6∧ (time%24) < 18)∗ kd
)
+

(
θ((time%24) < 6∨ (time%24)≥ 18)∗ kn

)
Encoding conditional expressions in this way has several disadvantages:

1. the expressions in the kinetic laws become complex and hard to read;

2. the kinetic laws make explicit reference to the current simulation time; and

3. the kinetic laws are no longer differentiable because of the use of the discontinuous θ function.

1Or sometimes a smoothly differentiable function which approximates this.

1

133

The first of these is a problem because we would like our models to be as easy to understand as possible (to reduce
the potential for modelling errors). The second disadvantage is a problem for Gillespie simulation frameworks
which do not usually expose the current simulation time to the kinetic functions (because for a Gillespie simulation
kinetic functions must depend only on rate constants and molecule counts). The third of these disadvantages
prevents modellers from deriving the Jacobian matrix of derivative functions which can be used to improve the
speed, accuracy and robustness of a numerical integrator. Without a representation of the Jacobian matrix a
numerical integrator typically approximates by using finite differences. However, this approximation will not
always be usable in practice because it may require the maximum allowed relative error from one time point to
the next to be decreased to an unacceptably small value. Finally, without a Jacobian matrix efficient approximate
stochastic simulation algorithms such as Gillespie’s τ-leap [1] cannot be used at all.

However, none of these problems arise if we express our model description as a pair of coupled models, one
using the set of daytime kinetic parameters (kd) and the other using the set of nighttime kinetic parameters (kn).
In this setting:

1. the expressions in the kinetic laws are simplified;

2. the kinetic laws do not need to make reference to the simulation time; and

3. the kinetic laws need not make use of a θ function and remain differentiable.

Maintaining a pair of closely related models would of course be a maintenance headache in practice but using
the Bio-PEPA process algebra [2] as the high-level modelling language for the problem we can generate this pair
of coupled models. In this way we decompose the modelling problem and we can perform separate simulations
which can be recombined to give the desired results. We have provided this functionality for Bio-PEPA by adding
the Bio-PEPA Workbench to the Dizzy simulation framework [3].

2 The Bio-PEPA Workbench
The Bio-PEPA Workbench2 is a command line software tool which provides a platform for analysis of Bio-
PEPA models using various techniques. This is accomplished by parsing a text file which contains a model
written in the Bio-PEPA language and capturing the model in an intermediate tree-like structure. This intermediate
representation is then used as a template for producing several outputs, using external tools. These outputs include:

• A differential equation model, in terms of a high level “vector field” representation. This representation is
used by VFGen which in turn generates ODE models suitable for analysis by the Sundials ODE suite and
MATLAB.

• A stochastic simulation model in C++ code which is used by stochkit, a software toolkit that features an
implementation of Gillespie’s SSA. The results generated by stochkit are then plotted with gnuplot.

• A Continuous Time Markov Chain model expressed in the reactive modules language, understood by the
PRISM model checker, and a CSL formulae file corresponding to than model.

• A LATEX report (along with the corresponding PDF) and an HTML page containing a formatted version of
the Bio-PEPA model and the graphs that were generated from the simulation runs.

• A translation of the Bio-PEPA model to the CMDL language, as used by the Dizzy simulator.

The file containing the Bio-PEPA model definition does not include arithmetic values assigned as initial concen-
trations of species or rate constants. Instead, these values are parsed from a separate CSV file which is a part of
the model definition. The CSV file consists of a row containing the names of the species and rate constants of the
model, and a number n ≥ 1 rows containing comma-separated values corresponding to the initial concentrations
and rate constants. This gives the capability to perform multiple analysis of the same model based on several
sets of initial concentration and rate constant values. The Bio-PEPA workbench is written in Standard ML, and
compiled to Java bytecode using the MLj compiler3.

2http://homepages.inf.ed.ac.uk/stg/software/biopepa
3http://www.dcs.ed.ac.uk/home/mlj

2

134 Efficient compositional simulation of circadian models using Bio-PEPA

3 Integration of the Bio-PEPA Workbench into Dizzy
Dizzy features a modular software framework in many aspects. New simulators and new parsers for model lan-
guages can be implemented and added easily through well-defined interfaces. Bio-PEPA could indeed, be imple-
mented and integrated using the relevant interface, which is called IModelBuilder and it defines a method for
accepting an InputStream object and returning a Model object. The Model class facilitates a unique and
consistent representation of a biochemical network in Dizzy. It includes objects representing reactions, species
(divided into reactants and products), stoichiometric coefficients, concentrations etc. Each one of the description
language parsers, performs the translation and capture of the underlying model into a Model object, which is used
for the simulation. In order to implement the IModelBuilder interface, however, we should have a parser for
Bio-PEPA implemented natively in Java. Instead we developed a new class which extends Dizzy’s EditorPane
and overrides the processModel() method. This method passes the text from the Dizzy text area into an
appropriate translator class (according to the model language which is currently enabled on Dizzy) and returns a
Model. The overridden processModel() method is responsible for passing the Bio-PEPA model text entered
into the text area to an internal method which performs the intermediate steps in order to translate the Bio-PEPA
model into a number of Dizzy models (according to the number of sets of CSV values) by calling the newly cre-
ated runtime library. Then it brings up a GUI chooser from which the user can select one of the output models to
simulate. The attribute mEditorPane is assigned either an EditorPane object or a BioPEPAPane, accord-
ing to what type of model is currently displayed in the text area. The intermediate steps of compilation from a
Bio-PEPA text model to a Model are now captured by processModel() of BioPEPAPane which is called
instead, when mEditorPane is assigned a BioPEPAPane object, using virtual method invocation. All other
calls made to processModel() will end up calling the overridden method.

4 Simulating a Bio-PEPA model
An interesting characteristic of representing a biochemical network as a Bio-PEPA model is the separation of the
initial concentrations and parameter values from the semantics of the model. This abstraction enables the Bio-
PEPA Workbench to perform multiple simulation runs for each set of values in the CSV file. The final constituent
of the extension involves transferring this capability to the Dizzy tool. It can be divided into three parts:

• Extension of the simulation framework to support successive simulations of multiple models for comple-
mentary time intervals.

• Implementation of new graph outputs to support colour marking of the graphs, according to the model
running for particular time ranges.

• Creation of a GUI component for choosing the model that will run for particular time intervals, the number
of time points that will be simulated for each time interval, and the colour that will be used for marking the
graph according to the model and the time interval.

The extension offers the capability of running multiple simulations of a Bio-PEPA model based on the CMDL
outputs which are acquired from the compilation of the Bio-PEPA model from the integrated library and the
different sets of values in the CSV file. For example, assuming that there are three sets of values in the CSV file, the
Bio-PEPA Workbench outputs three CMDL models with one set of values assigned to each. The modeller has the
ability to choose time intervals which will be assigned to each of the models, with the restriction that the intervals
must be exhaustive and non-overlapping. In the original version of Dizzy, a call to the processModel()
method in EditorPane would perform the translation from a model written in CMDL, to a Model object
which is an independent representation of the model, regarding the description language used, ready to simulate.
Afterwards, the object would be passed to the simulator framework. The simulation framework is responsible for
manipulating the numerics (i.e. concentrations of species) of the Model object during the simulation process. The
extension requires that all Model objects created from the Bio-PEPA model and the CSV file should be passed to
the extended simulation framework, thus the first step was to add a method to BioPEPAPane in order to process
the CMDL files and return all Model objects. The second step of this part of the extention involved extending the
functionality of the simulation framework in order to process all models with one of the simulation algorithms of
Dizzy in one simulation run.

3

Stephen Gilmore and Konstantinos Markakis 135

(a)

(b)

Figure 1: (a) The spreadsheet component as a part of Dizzy’s functionality; and (b) the GUI component featuring
the selection of the models, time-intervals for simulation and colours for the output graphs.

4

136 Efficient compositional simulation of circadian models using Bio-PEPA

5 Simulation management
To manage the more complex simulation process which involves coordinating multiple models, a new class ex-
tending SimulationLauncher was created, namely SimulationLauncherBioPEPA. According to the
description language which is enabled at the point of request for simulation, the respective class will be used as the
simulation GUI. The methods that are overridden in the new class, are the ones responsible for the simulation pro-
cess and the visualisation of the results. SimulationLauncherBioPEPA constitutes the extended simulation
framework and contains a constructor which accepts multiple models. The ability to select which models are going
to be simulated for particular time intervals is carried out though a new class which is instantiated from the ex-
tended simulation framework. This class provides a GUI component which enables the user to choose the models,
the corresponding time-intervals, the number of simulated time points for each model and the marker colours for
the selected models. Figure 1(b) shows the component as a part of the simulation GUI. An added feature permits
the user to repeat selected elements for a number of times by adding periodicity to the list. This class also contains
methods for checking the inputs in the text fields. More specifically, the time-intervals must be exhaustive and
non-overlapping. The overridden runSimulation() method in class SimulationLauncherBioPEPA
performs the necessary steps for the correct simulation of multiple models. An important assumption had to be
made in order to proceed to the implementation. In each simulation time step, the resulting concentration value of
a species depends on the model that is currently running, the simulation algorithm and the concentration value of
the previous time step. This is a valid assumption because each time step can be considered as the starting time for
the simulation of the model. The deterministic simulation algorithms will always behave in a predetermined way
according to the initial concentration, while the stochasticity in the stochastic algorithms does not depend on time.
Another reason that the assumption remains valid is that time-specific events are not implemented in the current
extension. Therefore there is no discontinuity in the concentration values during a simulation.

Figure 2: The output graph resulting from the simulation of the Michaelis-Menten kinetics model for different
parameter values.

6 Conclusions
We have implemented a simulation management framework for the Bio-PEPA language which is well-suited to
supporting the modelling and analysis of clocked models. The time series is divided into phases with a set of
parameter values assigned to each phase. Phases need not be of equal length, and there many be any number of
them (not just two). A cycle of simulation models is generated and simulated in isolation for each phase of the
cycle. The results are combined to give a presentation of the results across several phases of the cycle.

The use of an explicit time variable or a discontinuous function is avoided, making it possible to use efficient
numerical integrators for continuous simulation or efficient stochastic simulators such as τ-leap. Thus both contin-

5

Stephen Gilmore and Konstantinos Markakis 137

uous and deterministic simulation results are obtained more quickly than when using an approach which encodes
the phase-change using a θ function.

The method is implemented as an extension to the Dizzy simulator which includes a copy of the Bio-PEPA
Workbench tool. A syntax-highlighting editor for Bio-PEPA is provided, together with a built-in Java spreadsheet
for editing the files of parameter data read by the Bio-PEPA Workbench when generating Dizzy models for sim-
ulation. The compilation from Bio-PEPA to Dizzy is completely automated by the workbench, allowing Dizzy
models to be generated without user intervention.

The simulation process is driven by a user interface component which allows users to specify phases of the
simulation and to set the periodicity of the repetition. This flexible design allows for initial phases of the simulation
which are not repeated. For example, a simulation of a 12-hour day might begin with six hours of night, thereafter
followed by alternations of twelve hours of daylight and twelve hours of night, for any number of repetitions up
to a finite time horizon.

The simulation process is driven by a single source model in the Bio-PEPA process algebra, avoiding the need
to keep modified copies of a low-level simulation, and avoiding the need to ensure that these are consistent when
run.

Acknowledgements: Stephen Gilmore is supported by the EPSRC grant EP/E031439/1 “Stochastic Process
Algebra for Biochemical Signalling Pathway Analysis”.

References
[1] Daniel T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems. J. Comp.

Phys., 115(4):1716–1733, 2001.

[2] Federica Ciocchetta and Jane Hillston. Bio-PEPA: A framework for the modelling and analysis of biological
systems. Theoretical Computer Science, In Press, Corrected Proof, 2009. To appear.

[3] S. Ramsey, D. Orrell, and H. Bolouri. Dizzy: stochastic simulation of large-scale genetic regulatory networks.
J. Bioinf. Comp. Biol., 3(2):415–436, 2005.

6

138 Efficient compositional simulation of circadian models using Bio-PEPA

On the Formalisation of Gradient Diffusion Models

of Biological Systems

Andrea Degasperi and Muffy Calder

Department of Computing Science, University of Glasgow
Glasgow G12 8QQ, Scotland, UK
{andrea,muffy}@dcs.gla.ac.uk

Abstract

Many formal models for biological systems include a notion of topological space in the
form of compartments. We consider the problem of modelling gradient diffusion systems
that require a notion of metric space. We define diffusive slots, which govern local interac-
tions and the diffusion from and to adjacent slots, and areas, which comprise one or more
slots. We propose that a generic formalism is not suitable for modelling gradient diffu-
sion systems, rather we tailor formalisms to particular scenarios, e.g. to biological systems
with a given shape. An example of diffusion of nitric oxide in blood vessels illustrates the
approach.

1 Introduction

Numerous languages and frameworks for discrete representation and reasoning about biological
interactions have been developed over the last decade. The main contributions have been in
the area of process algebras [15, 14, 9, 4, 3, 7], where a biochemical system is modelled by
interacting processes representing molecules or species; rewriting rules [8, 2], where a system
is modelled by molecules and their binding sites and state change is governed by rules that
rewrite parts of the system; and high level languages [5, 13], where a biochemical system is
specified by a list of parameters, reactions and additional grammatical features, which can be
converted to any other formalism.

Here, we consider the problem of representing and reasoning about space in a discrete
formalisation and in particular, we consider gradient diffusion systems. While the formalisms
above have been extended to include a notion of space, it is usually by means of a topological
space with compartments that are private locations, each of which is governed by a specific set
of reactions and between which interactions are prohibited. Compartments are delimited by
membranes that are static or dynamic, i.e. they change through time, leading to changes in
the configuration of the compartmental structure.

In models of gradient diffusion systems, so far formalised mainly by cellular automata [1],
notions like position and distance between molecules are required. These models apply, for
example, to biological systems where proteins are translated in specific areas of tissues or

1

139

Figure 1: Two spatial approaches: single unit tracking (on the left) and average unit amount
in an area (on the right).

organs. The diffusion distance, i.e. the ability of proteins to migrate far from the source,
is fundamental for the correct functioning of the system: very precise phenotypes might be
connected to areas where different proteins meet. An example of this phenomenon is pattern
formation during morphogenesis of the Drosophila embryo [12].

The paper is organised as follows. In the next section we consider modelling choices for
spatial models and in section 3 we propose a framework for the formalisation of gradient
diffusion models. In section 4 we give an overview of a gradient diffusion model example:
diffusion of nitric oxide in blood vessels. Our conclusions and future work are in section 5.

2 Modelling choices for space

In this section we give an overview of modelling choices for the formalisation of biological
systems when a notion of location is required.

Individual and population view: in formal models of biochemical interactions, an
elementary unit is either a single molecule, a fixed number of molecules, or a fixed amount of
concentration. Formalising these elementary units in space, one has a choice between labelling

Figure 2: Compartments can be extended with a notion of position.

2

140 On the Formalisation of Gradient Diffusion Models of Biological Systems

Figure 3: Modification of the compartmental structure or of the spatial shape.

a unit with its position, or simply tracking the number of units of the same type that are at a
specific position. This is illustrated in Figure 1.

Many formalisms, such as Bioambients [16], Brane Calculi [6], bioκ-calculus [11] and
stochastic bigraphs [10], although capable of implementing the individual view, choose the
population view, primarily to reduce the state space explosion problem. An example of a
process algebra based on the population view is Bio-PEPA [7].

Topological and metric space: as previously mentioned, compartments delimit areas
where different molecules or different interactions take place. This is often suitable when con-
sidering a cell: typical compartments are cytoplasm and nucleus. But in diffusion systems, one
often considers tissues or organs, at an higher organisational level. The notion of compartment
is no longer sufficient. One needs to distinguish between diffusive slots, which govern local
interactions and the diffusion from and to adjacent slots, and areas, usually comprising one
or more slots, which encompass the delimiting function of compartments. This is illustrated
in Figure 2. Models that include a notion of diffusion in a metric space are usually continuous
and based on or derived from partial differential equations (PDEs). We note that in these
models, the shape of the biological entity being modelled and the coordinate system used are
critical factors.

Compartments and shape modification: some of the above mentioned formalisms, e.g.
Bioambients, Brane Calculi and stochastic bigraphs, allow compartment manipulation. When
the shape and the position of a biological entity is taken into consideration, other modifications
might be necessary, such as the addition of new slots or the reassignment of a slot to a different
area. This is illustrated in Figure 3. Examples of when these additional modifications might
be required are tumour growth and organ morphogenesis.

Clearly a form of metric space is required for modelling gradient diffusion. Our preliminary
investigations have led us to believe that a generic formalism will not be useful because there
is huge variety of overall shape of the biological entity, and consequently the chosen coordinate
system. We therefore concentrate on particular scenarios, as defined in the next section.

3

Andrea Degasperi and Muffy Calder 141

Language Query Language

PDEs Stochastic
Process Algebra

ODEs with
compartments

CTMC

CSL

True/False

Figure 4: Translation and query for a description of a given scenario

3 High level languages for specific scenarios

We define a scenario as a biological system and a set of assumptions about shape, compart-
mentalisation and equations governing diffusion. The difference between models of a scenario
will be in the level of detail, the types of molecules and biochemical interactions.

In order to formalise gradient diffusion models, we propose a high level descriptive language
that is designed specifically for a single scenario. These are the main advantages:

Improved readability and maintenance: a scenario specific language is compact, it
states only the information that distinguish models belonging to the same scenario. Notions
and assumptions that are shared by models of the same scenario do not need to be stated
explicitly in the language. Consequently descriptions are easy to read, write and maintain by
modellers that are familiar with the scenario.

Modularity and translations: a formal language can be parsed and translated to other
formalisms, such as process algebras or rewriting rules, if these are suitable for the scenario.
The translation is automatic and ensures reliability of model formulation. If new mathematical
models or formalisms that are more suitable are later defined, then new translations can be
used while the high level language is unaltered.

High level queries: it is possible to formulate queries based on the high level language.
Results are computed depending on the underlying formalism.

4 Example: nitric oxide bioavailability in blood vessels

In this section we briefly present an example scenario: diffusion in blood vessels.
Consider modelling nitric oxide (NO) bioavailability in blood vessels. Models of this sce-

nario aim to determine the diffusion distance of NO along the radius of a vessel, where NO is
produced in a narrow region on the internal wall of the vessel. Numerous models have been
developed over the last decade (see [17] for a complete review) and almost all of them share

4

142 On the Formalisation of Gradient Diffusion Models of Biological Systems

the same assumptions and use the same diffusion governing equations. In particular, a vessel is
modelled as a cylinder with partial differential equations (PDEs), using Fick’s law of diffusion
in cylindrical coordinates. Compartments define areas such as endothelium (where NO is pro-
duced), vascular wall, and lumen (i.e. where the blood flows). Another common assumption
is that the diffusion operates only in the radial direction, while it can be considered negligible
in other directions.

We have defined a high level language from which both a traditional PDE and a stochastic
process algebra (SPA) model can be derived. The SPA in this case is Bio-PEPA with static
compartments: the space (in this case the radius) has to be divided into a number of slots
defined by the modeller. The Bio-PEPA model is derived according to the implicit assumptions
of the scenario and to information in the high level description. This means that the character-
istics of each compartment, given by the rates of transport between compartments, the volume
and the associated reactions, are derived automatically. From the Bio-PEPA description thus
derived, other modelling approaches become accessible, such as ordinary differential equations
(ODEs) with compartments, and continuous time markov chains (CTMCs with levels) (see
[7] for details). Finally, a high level query language can be mapped to continuous stochastic
logic (CSL), for reasoning about the states of the chain. A schematic representation of these
translations is given in Figure 4.

5 Conclusions and Future Work

We have considered the problem of modelling gradient diffusion systems requiring a notion
of metric space. In order to model space, we introduced diffusive slots, which govern local
interactions and the diffusion from and to adjacent slots, and areas, comprising one or more
slots, which encompass the function of compartments. We outlined an approach for modelling
based on a high level language description for a given scenario and gave a brief overview of
modelling an example gradient diffusion system: bioavailability of nitric oxide in blood vessels.

Future work includes formal proof the relationship between the underlying models, i.e.
between PDEs, ODEs and CTMCs with levels, and further investigation of suitable query
languages for gradient diffusion models.

References

[1] O. L. Bandman. Comparative Study of Cellular-Automata Diffusion Models. PaCT-99,
LNCS 1662, pages 395-409, 1999.

[2] M. L. Blinov, J. R. Faeder, B. Goldstein and W. S. Hlavacek. BioNetGen: software
for rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics, Vol. 20, no. 17, pages 3289-3291, 2004.

[3] L. Bortolussi. Stochastic concurrent constraint programming. Proceeding of QAPL2006:
4th International workshop on quantitative aspects of programming languages, 164:65-80,
2006.

5

Andrea Degasperi and Muffy Calder 143

[4] M. Calder, S. Gilmore, and J. Hillston. Modelling the influence of RKIP on the ERK
signalling pathway using the stochastic process algebra PEPA. T. Comp. Sys. Biology,
VII, volume 4230 of LNCS, pages 1–23, Springer, 2006.

[5] L. Calzone, F. Fages, S. Soliman. BIOCHAM: An environment for modelling biological
systems and formalizing experimental knowledge. Bioinformatics, 22, pages 1805-1807,
2006.

[6] L. Cardelli. Brane Calculi. CMSB 2004, LNCS (LNBI), vol. 3082, pp. 257-278. Springer,
Heidelberg, 2005.

[7] F. Ciocchetta, and J. Hillston. Bio-PEPA: an extension of the process algebra PEPA for
biochemical networks. Proc. of FBTC 2007, volume 194/3 of ENTCS, pages 103–117,
2008.

[8] V. Danos, J. Feret, W. Fontana, R. Harmer and J. Krivine. Rule-based modelling of cel-
lular signalling. Proceeding of the 18th International Conference on Concurrency Theory
(CONCUR’07), LNCS, Sep 2007.

[9] J. Hillston. A Compositional Approach to Performance Modelling, Cambridge University
Press, 1996.

[10] J. Krivine, R. Milner and A. Troina. Stochastic Bigraphs. ENTCS 218 , pages 73-96,
2008.

[11] C. Laneve, F. Tarissan. A simple calculus for proteins and cells. ENTCS 171, pages
139-154, 2007.

[12] C. M. Mizutani, Q. Nie, F. Y.M. Wan, Y. Zhang, P. Vilmos, R. Sousa-Neves, E. Bier, J.
L. Marsh and A. D. Lander. Formation of the BMP Activity Gradient in the Drosophila
Embryo. Developmental Cell, Vol. 8, 915924, June, 2005.

[13] M. Pedersen, G. Plotkin. A language for biochemical systems. CMSB 2008.

[14] C. Priami and P. Quaglia. Beta-binders for biological interactions. Proc. of CMSB’04,
Volume 3082 of LNCS, pages 20–33, Springer, 2005.

[15] A. Regev. Representation and simulation of molecular pathways in the stochastic π-
calculus. Proceedings of the 2nd workshop on Computation of Biochemical Pathways and
Genetic Networks, 2001.

[16] A. Regev, E. Panina, W. Silverman, L. Cardelli and E. Shapiro. Bioambients: An abstrac-
tion for biological compartments. Theoretical Computer Science, 325(1), pages 141-167,
2004.

[17] N. M. Tsoukias. Nitric Oxide Bioavailability in the Microcirculation: Insights from Math-
ematical Models. Microcirculation, 15:8, 813–834, 2008.

6

144 On the Formalisation of Gradient Diffusion Models of Biological Systems

Modelling the bubonic plague in a prairie dog

burrow, a work in progress

Soufiene Benkirane, Carron Shankland, Rachel Norman, Chris McCaig
University of Stirling

1 Introduction

Plague is caused by a bacteria known as Yersinia pestis, and is affecting over
200 mammalian species worldwide [6], including human. It is famous for being
the Black Death, who killed millions of people in Europe. Even now, the disease
is still a serious health problem in some parts of the world [3], and it is lethal
without immediate medicale attention.

In North America, the black-tailed prairie dog is a keystone species in the
flora and fauna dynamics, with over a hundred related species [5]. However, the
introduction of this exotic disease has severe consequences on the population of
prairie dogs, and thus affects the whole ecosystem. Indeed, prairie dogs are ex-
tremely susceptible to the plague, and their mortality rate is almost 100% when
infected. The main source of infection has long been thought to be the prairie
dog flea (Oropsylla hirsuta)[8]. However, a recent paper [9] suggested that the
flea might not be the main vector of infection, but that direct transmission and
infected soil might have a more important role. This paper tries to reproduce
the results obtained in Webb et al. [9], while using a PEPA model instead of
Ordinary Differential Equations (ODEs). The main objective is to determine
if PEPA is capable of modelling an epidemiological model, and what issues are
raised while doing so. The bubonic plague is particularly suitable for addressing
this issue, as it requires several different features to be added to describe the
disease behaviour.

2 Presentation of the disease behaviour

2.1 The bubonic plague behaviour

The disease has three main vectors of infection. The first is direct transmission.
In other words, if a prairie dog affected by the bubonic plague meets one that
is not, there is a chance that the bubonic plague is transmitted to the non-
infected prairie dog. The second vector is indirect transmission. In this case, an
infectious prairie dog infects the soil, either with its faeces or when it dies, its
body still being very infectious. The final vector of infection is the flea. A flea

1

145

S def= (contact direct ,>).Exposed + (indirect contact ,>).Exposed+
(contact ,>).Exposed(birth, birthrate).S + (die, death rate PD).Dead+
(infantdeath,>).SDying

SDying def= (dieNewBorn,>).Dead
Exposed def= (contact direct ,>).Exposed + (indirect contact ,>).Exposed+

(contact ,>).Exposed + (infected , incubation rate).Inf +
(die, death rate PD).Dead + (infantdeath,>).Exposed

Inf def= (contact direct ,>).Inf + (infect flea, inf flea rate).Inf +
(indirect contact ,>).Inf + (infect environment , inf env rate).Inf +
(contact ,>).Inf + (die inf , death rate inf PD).Dead+
(die, death rate PD).Dead + (infantdeath,>).Inf

Dead def= (indirect contact ,>).Dead + (alive,>).S + (infantdeath,>).Dead
SainPD def= (die,>).DeadPD + (infantdeath, birthrate ∗ totalNbPD/k).SainPD+

(infected ,>).InfectedPD + (dieNewBorn,>).DeadPD
InfectedPD def= (die inf ,>).DeadPD + (die,>).DeadPD+

(contact direct , contact direct rate).InfectedPD
DeadPD def= (birth,>).TempPD
TempPD def= (alive, big).SainPD

Sq def= (death, fdeathrate).DeadF + (findHost , a ∗meanNbHost).Sh
Sh def= (flea birth, fbirthrate).Sh + (death, fdeathrate).DeadF+

(leaveHost , leaveHostRate).Sq + (infect flea,>).Eh
Eq def= (death, fdeathrate).DeadF + (findHost , a ∗meanNbHost).Eh+

(infectiousF , flea incubation rate).Iq
Eh def= (flea birth, fbirthrate).Eh + (death, fdeathrate).DeadF+

(leaveHost , leaveHostRate).Eq + (infect flea,>).Eh+
(infectiousF , flea incubation rate).Ih

Iq def= (death, finfdeathrate).DeadF + (findHost , a ∗meanNbHost).Ih
Ih def= (death, finfdeathrate).DeadF + (leaveHost , leaveHostRate).Iq+

(infect flea,>).Ih + (contact , transmission rate ∗ a ∗meanNbHost).Ih
DeadF def= (flea alive,>).Sq

ReservoirFlea def= (death,>).DeadFlea
DeadFlea def= (flea birth,>).TempFlea
TempFlea def= (flea alive, big).ReservoirFlea

Infenv def= (indirect contact , contact env rate ∗ totalNbPD).Infenv+
(decay , decay rate).Noninfenv

Noninfenv def= (infect environment ,>).Infenv
((S [98] ‖ Inf [2] ‖ Dead [100]) ./

{∗}
(SainPD [98] ‖ InfectedPD [2] ‖ DeadPD [100]))

./
{∗}

((Sq [990] ‖ Iq [10] ‖ DeadF [10000]) ./
{∗}

(ReservoirFlea[1000] ‖ DeadFlea[10000]))
./
{∗}

Noninfenv [100000]

Figure 1: The bubonic plague in prairie dogs PEPA model.
2

146 Modelling the bubonic plague in a prairie dog burrow, a work in progress

can be infected by an infectious prairie dog while feeding on him. Once inside
the flea’s body, the bacteria blocks the proventriculus [1], preventing the flea
from eating. As it cannot manage to eat anymore, the flea starts biting more
often. If it goes to a different prairie dog, it might infect it. The flea finally
starves to death after a few days.

2.2 The model

In order to model the disease, an SI model [4] will be used. In these models,
the population is divided in two: the Susceptibles and the Infectious. The Sus-
ceptibles are individuals that do not have the disease. They have a chance to
become Exposed if they are contacted by an Infectious. After the incubation pe-
riod, they themselves become infectious. So an infectious individual can spread
the disease. In the case of the bubonic plague, the Infectious cannot recover,
the disease is deadly in almost 100% of cases [9, 7].

In the case of the bubonic plague in the prairie dog population, direct trans-
mission, transmission via fleas, and transmission via the infected soil had to be
modelled. The model that has been used in this study is presented in Figure 1.
It is divided into five section: prairie dogs, a mirror image of prairie dogs, fleas,
a mirror image of fleas and the soil. Prairie dogs can be in five different states:
S, SDying, Exposed, Inf or Dead. This corresponds to the states describing an
SI model. However, two states can raise questions. SDying is used in order to
model density dependent birth. Indeed, in this model, birth occurs at a con-
stant rate birthrate. However, some of the infants can die, because the density
of the population is too high. This results in an overall population increase of
birthrate × S(1 − S/K) which is very similar to the term used by Webb et al.
[9] birthrate × S(1 − N/K) (with N the total population of prairie dogs) 1.
The second unusual state is Dead. This state is necessary as it is not possible
in PEPA to create new sequential components, so these represent ghosts, or
potential newborns. The second section, the mirror image of the prairie dogs’
section, is necessary to model all the interactions between prairie dogs, such as
direct transmission of the disease or birth. This is explained in more details by
Benkirane et al. [2]. The third and fourth sections detail flea behaviour, in a
similar fashion to prairie dogs. Finally, the fifth section models the soil, which
can either be infected or healthy. It has not been possible to faithfully capture
the model of Webb et al. [9] in PEPA. In particular, the transmission from fleas
to prairie dogs, and the reproduction of fleas is driven by density dependent
terms that cannot be precisely described in PEPA. The parameters that have
been used are shown in Figure 2. Most of them are taken from Webb et al. [9],
apart from fbirthrate which has been chosen within biologically realistic bounds.

3

Soufiene Benkirane, Carron Shankland, Rachel Norman and Chris McCaig 147

Parameter Value Description
birthrate 0.0866/2 Intrinsic rate of increase (host)
K 200 Carrying capacity (host)
totalNbPD 200 Total number of host (including the dead ones)
death rate PD 0.0002 Natural mortality rate (host)
transmission rate 0.09 Flea transmission rate
contact direct rate 0.073 Airborne transmission rate
contact env rate 0.073/20 Transmission rate from reservoir
incubation rate 0.21 Incubation period−1 (host)
death rate inf PD 0.5 Infected host mortality rate
decay rate 0.006 Reservoir decay rate
leaveHostRate 0.05 Rate of leaving hosts
a 0.004 Searching efficiency of questing fleas
fdeathrate 0.07 Natural mortality rate (vector)
inf flea rate 0.28 Transmission rate: hosts to vector
flea incubation period 0.009 Incubation period−1 (vector)
finfdeathrate 0.33 Disease-induced mortality rate (vector)
fbirthrate 0.14 Intrinsic rate of increase (vector)

Figure 2: The parameters used in the simulations.

10 20 30 40 50
time

20

40

60

80

100

120

140

Total Population

Figure 3: The comparison of the two sets of ODEs: The red line represents the
total population of prairie dogs, with equations taken from Webb et al. [9] and
the black line is from the equations derived from the PEPA model. Root Mean
Square value: 9.19

4

148 Modelling the bubonic plague in a prairie dog burrow, a work in progress

10 20 30 40 50
time

50

100

150

200
Total Population

Figure 4: Total population of prairie dogs, when only one vector of transmission
is triggered. The blue line represents the number of prairie dogs when only
direct transmission is present, and the dashed green one describes what happens
when only indirect transmission is considered. The model with fleas only is not
represented because it overlaps with the direct transmission model.

5

Soufiene Benkirane, Carron Shankland, Rachel Norman and Chris McCaig 149

3 First results

Ordinary Differential Equations (ODEs) have been derived from the model using
the Stirling Amendment algorithm [2], and compared to the set of equations
given by Webb et al. [9]. Stochastic simulations appear to produce unreliable
results for this model and are therefore not used. For example, the number of
sequential components in a particular state can sometimes be calculated to be
negative. Clearly, this can never be the case. When the ODEs derived from the
PEPA model are used, they match the ODEs from Webb et al. [9], as shown in
Figure 3, which is a first step in validating the PEPA model. There is a slight
difference at the start, which remains to be understood.

The goal in modelling this system is to consider rigorously the three different
transmission methods, and to ascertain if one is more crucial to overall disease
dynamics than the others. For this purpose, three submodels are extracted
from the model of Figure 1 by setting appropriate parameters to zero. The
results, presented in Figure 4 clearly show that the main vector of transmission
is indirect transmission. This is a very interesting result, as it contradicts the
classical view that fleas are the main vector of transmission. However, a caveat
is in order: the parameter driving the indirect transmission is not backed up by
data.

4 Conclusion

PEPA has proved to be very capable of describing epidemiological problems.
Indeed, although it does not allow directly for some key features present in
biological phenomena (e.g. time dependent parameters, density dependent pa-
rameters), it provides ways of bypassing the problem, whilst still producting
sensible results. However, in order to fully validate this particular PEPA model,
a comparison with the data gathered from the field still needs to be carried out.
Also, a sensitivity analysis is needed for some of the parameters, in particu-
lar the indirect transmission rate, in order to confirm that it is indeed indirect
transmission that drives the spread of the disease.

Finally, this first epidemiological model based on a real biological system
has provided insights into which issues might arise when modelling biological
problems in PEPA. In particular, space and density dependent transmission are
two very common features. Therefore, it needs to be determined in which cases
it is possible to add one of these features to a PEPA model and how this could
be done.

References

[1] C. R. Esleu amd V. H. Haas. Plague in the Western Part of the United
States. U.S Government Printing Office, Washington, DC, 1940.

1A forthcoming paper will give more details about this kind of term.

6

150 Modelling the bubonic plague in a prairie dog burrow, a work in progress

[2] Soufiene Benkirane, Jane Hillston, Chris McCaig, Rachel Norman, and Car-
ron Shankland. Improved continuous approximation of pepa models through
epidemiological examples. Electron. Notes Theor. Comput. Sci., 229(1):59–
74, 2009.

[3] M.J. Keeling and C.A. Gilligan. Bubonic plague: a metapopulation model.
P Roy Soc Lond B Bio, (267):2219–2230, 2000.

[4] W.O. Kermack and A.G. McKendrick. Contributions to the mathematical
theory of epidemics. Proceedings of the Royal Society of London A, 115:700–
721, 1927.

[5] N. B. Kotliar, B. W. Baker, A. D. Whicker, and G. Plump. A critical review
of assumptions about the prairie dog as a keystone species. Environmental
Management, (24):177–192, 1999.

[6] J. D. Poland and A. M. Barnes. Plague, volume 1 of J. H. Steele, ed. CRC
handbook series in zoonoses, Section A. Bacterial, rickettsial, and mycotic
diseases. CRC, Boca Raton, FL, 1979.

[7] Paul Stapp, Michael F. Antolin, and Mark Ball. Patterns of extinction in
prairie dog metapopulations: plague outbreaks follow el niño events. Front
Ecol Environ, 5(2):235–240, 2004.

[8] SR Ubico, GO Maupin, KA Fagerstone, and RG McLean. A plague epizootic
in the white-tailed prairie dogs (Cynomys leucurus) of Meeteetse, Wyoming.
J Wildl Dis, 24(3):399–406, 1988.

[9] Colleen T. Webb, Chistopher P. Brooks, Kenneth L. Gage, and Michael F.
Antolin. Classic flea-borne transmissoin does not drive plague epizootics in
prairie dogs. PNAS, 103(16):6236–6241, 2006.

7

Soufiene Benkirane, Carron Shankland, Rachel Norman and Chris McCaig 151

Abstract

We use NetLogo to create simulations of two models of disease transmission originally expressed in WSCCS. This allows us
to introduce spatiality into the models and explore the consequences of having different contact structures among the agents.
In previous work, mean field equations were derived from the WSCCS models, giving a description of the aggregate beha-
viour of the overall population of agents. These results turned out to differ from results obtained by another team using cellu-
lar automata models, which differ from process algebra by being inherently spatial. By using NetLogo we are able to explore
whether spatiality, and resulting differences in the contact structures in the two kinds of models, are the reason for this dif-
ferent results. Our tentative conclusions, based at this point on informal observations of simulation results, are that space
does indeed make a big difference. If space is ignored and individuals are allowed to mix randomly, then the simulations
yield results that closely match the mean field equations, and consequently also match the associated global transmission
terms (explained below). At the opposite extreme, if individuals can only contact their immediate neighbours, the simulation
results are very different from the mean field equations (and also do not match the global transmission terms). These results
are not surprising, and are consistent with other cellular automata-based approaches. We found that it was easy and conve-
nient to implement and simulate the WSCCS models within NetLogo, and we recommend this approach to anyone wishing to
explore the effects of introducing spatiality into a process algebra model.

1. Introduction

Susceptible-Infected-Recovered (SIR) models are a widely used technique for modelling the spread of infectious disease.

These models consist of coupled ordinary differential equations, describing the disease in terms of three population groups:

S, susceptible individuals, who have never had the disease; I, infecteds, who can pass on the disease to susceptibles; and R,

recovereds who are assumed to be immune from future infection. A key concept in this approach is the “global transmission

term” [3] which describes the rate at which susceptibles are converted into infecteds by their contact with previously infected

individuals. The correct form of these transmission terms is the subject of much debate. Traditionally, two terms have been

used: βSI (“density dependent transmission”) and β’SI/N (“frequency dependent transmission”). Frequency dependent trans-

mission is typically used for diseases where the number of potentially infectious contacts is considered to be fixed, rather

than depending on population density; the classic example is sexually transmitted diseases, if it is assumed that the average

person has a fixed number of sexual contacts. Density dependent transmission applies to diseases such as measles, where the

number of potentially infectious contacts is higher in a denser population. (We are assuming here that the overall area occu-

pied by the population is fixed, as the transmission terms become more complex if this assumption is relaxed.)

Traditional SIR models describe the situation at a global, aggregate level, and an interesting question has been how to re-

late this to the behaviour of single individuals. Individual behaviour can be modelled by cellular automata, which can then be

analysed by performing simulations, or by a limited set of algebraic techniques such as pair approximation. An alternative

technique using process algebra was developed by McCaig [1]. Here, a model of individual behaviour is created using a sto-

chastic process algebra such as WSCCS, and this is then used to derive a set of mean field equations representing the emer-

gent population level behaviour.

In this paper we focus on two disease models created in WSCCS, representing density dependent transmission and fre-

quency dependent transmission. These models are presented in full detail in [2] where the techniques of [1] were used to de-

rive mean field equations from these models. The transmission terms can then be derived from these equations, and were

shown to be β’SI/N (the frequency dependent term) in the model which used frequency-dependent transmission, and βSI (the

density dependent term) in the model using density-dependent transmission. These results seem unsurprising, but they appear

to be contradicted by results obtained by another team who used a cellular automata approach. Turner et al [4] built cellular

Studying the effects of adding spatiality to a process algebra model

Savi Maharaj, Chris McCaig, Carron Shankland

Department of Computing Science and Mathematics, University of Stirling,

Stirling, Scotland
{sma,cmc,ces}@cs.stir.ac.uk

153

automata models of the two forms of disease transmission and, after running many simulations and using statistical tech-

niques to fit the resulting data to the two transmission terms, concluded that the global frequency dependent term was better

at describing both forms of transmission.

Our aim was to investigate the reason for this discrepancy. The WSCCS and cellular automata models differ in a number

of details, but the most striking difference is the presence of spatiality in cellular automata. In WSCCS, there is no notion of

agents being located in space, and one cannot (or not without some cumbersome encoding) speak of agents being near or far

from each other. Contact between agents is therefore entirely random. In cellular automata models, however, agents are

usually located on a two-dimensional grid and one can speak of the distance between pairs of agents. In the cellular automata

built by [4] contact between agents was determined by the distance between them; in effect, an agent could only make contact

with its nearest neighbours. Our suspicion was that this was the reason for the differing results.

We used NetLogo [5] to create implementations of the WSCCS models of both frequency dependent transmission and

density dependent transmission. We provided each model with two choices of contact structure between individuals: random

mixing, intended to capture the contact structure implicit in WSCCS, and nearest neighbour mixing, which is the contact

structure used in the cellular automata of [4]. We then compared the results of simulating these models with the results pre-

dicted by the mean field equations derived from the original WSCCS models. In section 2 we explain the WSCCS models,

introduce NetLogo, and briefly discuss how the simulations were built. Section 3 describes the results of running the Net-

Logo simulations and Section 4 discusses our conclusions and possible future work.

2. Using NetLogo to add spatiality to the WSCCS models

The WSCCS models [2] include four types of agents: susceptibles, infecteds, recovereds, and newborns. (Newborns have no

interactions with other agents and mature into susceptibles after one time step.) The models consist of three stages. In the first

stage all individuals can give birth with a density dependent probability (p-birth = p-birth-0 – k Nt, where p-birth-0 is the

probability of birth in the absence of crowding, k is a scaling constant, and Nt is the size of the population (which, at this

stage, contains no newborns). In addition, the infected individuals can also probabilistically become transmitters. For fre-

quency dependent transmission, this occurs with a fixed probability, p-contact. For density dependent transmission, this

probability is directly proportional to the size of the population, and is given by the term κNt, where κ is a scaling constant.

This is the only difference between the two kinds of transmission.

In the second stage, each transmitter makes a single contact with another (non-newborn) member of the population. In the

final stage, individuals make probabilistic choices, with all probabilities being fixed. Susceptibles which were contacted by a

transmitter may either become infected (with probability p-infect), die (with probability p-die) or remain as susceptible (with

probability 1 – p-infect – p-die). Infecteds either recover (with probability p-recover), die (with probability p-die), or remain

infected (with probability 1 – p-recover – p-die). Recovereds and uncontacted susceptibles each die (with probability p-die)

or remain in their current state (with probability 1 – p-die). Finally, newborns mature to become susceptible within the next

iteration of the model.

The full WSCCS code for each of these models is given in [2], which also gives the derived mean field equations. For

frequency dependent transmission, the mean field equations give rise to the transmission term β’StIt/Nt (where β’ = p-infect *

p-contact), which is the standard frequency dependent transmission term. For density dependent transmission, the derived

transmission term is βStIt (where β = p-infect * κ), which is the standard density dependent transmission term.

Contact between agents in WSCCS is purely random, as there is no notion of agents being spatially located. To study the

effect of adding spatiality we translated the WSCCS models into NetLogo. NetLogo [5] is a “cross-platform multi-agent pro-

grammable modelling environment” which has been used for building simulations of a very diverse set of phenomena in a

wide variety of domains within the physical, natural, and social sciences. It is a descendent of the Logo programming lan-

guage, which was designed for teaching programming to schoolchildren, and retains some Logo features such as easy and

intuitive programmability (as well as the keyword “turtle” to describe an individual agent). However, it also includes many

features which make it suitable for serious research. The features most important for our work were the interface builder,

which makes it easy to add buttons, sliders, choosers and other I/O features for controlling and monitoring a simulation, and

the plotting system, which allows simulation results to be dynamically displayed on screen.

The programming language of NetLogo is well designed to support multi-agent programming. Essentially, mobile agents

called “turtles” move over a spatial grid of stationary agents called “patches”. (Turtles may also be connected via “link”

agents but these were not used.) Turtles may be differentiated into different “breeds”, each with their own local variables and

methods. In this project, four breeds were defined: newborns, susceptibles, infecteds, and recovereds. A

large and powerful set of language primitives support interactions between agents. The ease of coding is perhaps best illus-

trating by showing a sample of code. Figure 1 shows the code for the transmitters-make-contact procedure, which

154 Studying the effects of adding spatiality to a process algebra model

is called at stage 2, after the infected agents have made a probabilistic choice either to become a disease transmitter (trans-

mitter? = true) or not. The ask command is applied to the agent set infecteds with [transmitter? =

true], and causes all such agents to carry out the following block of code. This code first checks whether there remain any

other uncontacted non-newborns, as contact will not be possible if all possible contacts have already been made. Contact will

then be made according to the chosen contact structure. If random mixing is chosen, then another randomly chosen uncon-

tacted non-newborn will be marked as contacted. If nearest neighbour mixing is chosen, then the contact will be made with a

suitable agent located at the minimum distance from the contacting agent. (If there are several agents at the minimum dis-

tance, a random choice will be made). The transmitter? variable is then reset to false for the next iteration.

The NetLogo user interface is shown in Fig 2. The “interface” tab has been selected and shows the user interface created

for our WSCCS models. (The other two tabs contain documentation and program code.) At the top left there are various but-

tons, input areas, choosers, and sliders for controlling the simulation and entering parameters. At the bottom left there is a

graphical visualization of the simulation. At the right there are three plotting areas, each containing plots of the numbers of

infecteds, recovereds, susceptibles, and the total size of the population. These values are plotted against time, measured in

“ticks”, each corresponding to one iteration of the simulation. The top plot shows the results of the simulation, while the

other two plots show the values predicted by the mean field equations corresponding to frequency dependent and density de-

pendent transmission. These plots allow a quick visual comparison between the simulation results and the results predicted by

the two transmission terms. For a more rigorous comparison, NetLogo may also be programmed to perform multiple simula-

tion runs over a range of parameter values, and the resulting data may then be subjected to statistical analysis using some

other appropriate tool, such as S-PLUS.

3. Results

At this stage in this work we have not yet attempted to perform large-scale multiple simulations or to do any statistical analy-

sis of the simulation results. However, some results already appear to be very likely from observation of several individual

simulation runs. It seems safe to say that with random mixing, the simulation results support the conclusions of [2]: density-

dependent transmission results in the behaviour described by mean field equations that use the global density-dependent

transmission term, and frequency-dependent transmission results in the behaviour described by mean field equations with the

global frequency-dependent transmission term. Figure 2 shows an example of a simulation run that illustrates this. In this run,

we have selected frequency dependent transmission and random mixing, and the simulation output is clearly a much closer

match to the graph of the mean field equations for frequency dependent transmission. (The three sets of graph are separated

for clarity, but are drawn to the same scales.)

The results are much less clearcut when nearest neighbour mixing is applied. More work would be needed to study these

results systematically, but observations suggest that neither of the two global transmission terms is particularly good at de-

scribing either frequency-dependent or density-dependent transmission when nearest-neighbour mixing is used. This is not

to transmitters-make-contact

ask infecteds with [transmitter? = true] [

 if (any? other turtles with [(contacted? = false) and (breed != newborns)]) [

 if (mixing = "random") [

 ask one-of other turtles with [(contacted? = false) and (breed != newborns)]

 [set contacted? true]

]

 if (mixing = "nearest neighbour") [

 ask min-one-of

 other turtles with [(contacted? = false) and (breed != newborns)]

 [distance myself]

 [set contacted? true]

]

]

 set transmitter? false

]

end

Fig 1: sample NetLogo code

Savi Maharaj, Chris McCaig and Carron Shankland 155

very surprising, as there is an assumption of random contact (or “mass action”) in the derivation of the global transmission

terms, and indeed it appears to be folklore knowledge [7] within the mathematical modelling community that these transmis-

sion terms do not generally work for spatially-based models. This is supported by Rhodes and Anderson [6] who developed a

cellular automata model involving moving individuals, and varied the “step length”, i.e, the distance travelled by an individ-

ual at each time step. This approach may be seen as a more general form of our experiment, where random mixing corre-

sponds to the case where an individual may move an arbitrary distance, and nearest-neighbour mixing is the case where the

step length is the shortest possible non-zero value. Rhodes and Anderson discovered that the traditional global transmission

terms (or “mass-action-based models”) are only appropriate if the step length is sufficiently large in comparison with the

mean distance between individuals. For shorter step lengths, mass-action is not applicable, and the behaviour of the popula-

tion is dependent on the value of the step length. Our observations appear to be consistent with these results.

Fig 2: NetLogo interface showing the WSCCS simulation

156 Studying the effects of adding spatiality to a process algebra model

4. Discussion

We found that NetLogo provided a very effective and easy-to-use method to explore the effect of adding spatiality to a proc-

ess-algebra based model. The agent-based style of programming used by NetLogo makes it relatively easy to implement

process algebra concepts such as agents (“turtles” in NetLogo), different classes of agent (“breeds”), communication and

synchronization. There is no direct support for probabilistic actions, however, so these have to be coded explicitly by using

random number generation. There are many powerful language constructs supporting spatiality and movement of agents. We

also found the support for graphing. We would recommend NetLogo to anyone wishing to investigate the behaviour of a

process algebra model when deployed in some particular spatial setting, or with some spatially-described contact structure

amongst agents. An example might be exploring the workings of some communications protocol within a specific network

configuration. A more ambitious future project would be to develop a systematic method for compiling process algebra mod-

els into NetLogo (perhaps with default “random” contact between agents) so as to make it easier to explore the effect of add-

ing spatiality.

References

1. C. McCaig, (2007), From individuals to populations: changing scale in process algebra models of biological systems. PhD

thesis, University of Stirling. http://hdl.handle.net/1893/398.

2. C. McCaig, M. Begon, C. Shankland and R. Norman. A rigorous approach to investigating common assumptions about

disease transmission, unpublished draft, 2009.

3. M. Begon, M. Bennet, R.G. Bowers, N.P. French, S.M. Hazel, and J. Turner. A clarification of transmission terms in

host-microparasite models: numbers, densities and areas. Epidemiol. Infect., 129:147–153, 2002.

4. J. Turner, M. Begon, and R.G. Bowers. Modelling pathogen transmission: the interrelationship between local and global

approaches. Proc. Roy. Soc. Lond. B, 270:105–112, 2002.

5. U Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo/ Center for Connected Learning and Computer-Based Model-

ing Northwestern University, Evanston, IL, 1999

6. C.J. Rhodes and R.M. Anderson. Contact rate calculations for a basic epidemic model. Math. Biosci., 216:56–62, 2008.

7. A Kleczkowski. Personal communication, 2009.

Savi Maharaj, Chris McCaig and Carron Shankland 157

From individual behaviour to population
dynamics: changing scale in models of

superspreaders

Chris McCaig1, Mike Begon2, Carron Shankland1, and Rachel Norman1

1 Department of Computing Science and Mathematics, University of Stirling,
Stirling, FK9 4LA, UK. {cmc,ran,ces}@cs.stir.ac.uk
2 School of Biological Sciences, University of Liverpool,
Liverpool, L69 3BX, UK. {mbegon}@liverpool.ac.uk

1 Introduction

Traditional models of directly transmitted infectious disease [1, 4] split the pop-
ulation into those who are susceptible to the disease, those who are infectious
and those who are immune to it. However, it is believed that for a wide range
of disease systems there are a few individuals who cause the majority of new
infections. These individuals are known as superspreaders [6]. Two mechanisms
have been proposed to explain superspreaders and this paper presents our inves-
tigation of these proposals.

In the superspreader models that follow the infected portion of the pop-
ulation consists of two distinct groups: standard infected individuals (I) and
superspreaders (U). The first mechanism that has been proposed to explain
superspreaders is increased infectiousness (also known as supershedders). If a
susceptible individual is contacted by a supershedder the probability of becom-
ing infected (piu) is higher than the probability of becoming infected having been
contacted by an infected individual (pi), i.e. piu = αpi for some constant α > 1.
Supershedders may arise because of a compromised immune system (meaning,
for instance, that more of the infectious microorganism is present in their body
so the quantity shed is greater) or because of some genetic predisposition that
causes them to shed a greater quantity of the infectious microorganism.

In the second proposed mechanism the contact rate for the superspreaders
is higher than the contact rate of the infected individuals. We implement this
by having the probability that a superspreader will make contact in an iteration
of the model (pcu) larger than the probability that and infected individual will
make contact (pc) i.e. pcu = αpc. These superspreaders are more gregarious or
well travelled than average and therefore make significantly more contacts than
most infected individuals in the population.

The superspreader model presented here was developed in the process alge-
bra Weighted Synchronous Calculus of Communicating Systems (WSCCS) [13],
which has proved particularly useful in studying a wide range of biological sys-
tems [3, 10–12].

159

S1
def
= 1.

√
: S2

I1
def
= pci.

√
: I2× T2 + (1− pci).

√
: I2

U1
def
= pcu.

√
: U2× TU2 + (1− pcu).

√
: U2

R1
def
= 1.

√
: R2

S2
def
= ω.inf : SI3 + ω.infU : SU3 + 1.

√
: S3

T2
def
= ω.infect : 0 + 1.

√
: 0

I2
def
= ω.inf : I3 + ω.infU : I3 + 1.

√
: I3

U2
def
= ω.inf : U3 + ω.infU : U3 + 1.

√
: U3

TU2
def
= ω.infU : U3 + 1.

√
: U3

R2
def
= ω.inf : R3 + ω.infU : R3 + 1.

√
: R3

B2
def
= 1.

√
: B3

S3
def
= 1.

√
: S1

SI3
def
= (pi ∗ (1− ps)).

√
: I1 + (pi ∗ ps).

√
: U1 + (1− pi).

√
: S1

SU3
def
= (piu ∗ (1− ps)).

√
: I1 + (piu ∗ ps).

√
: U1 + (1− piu).

√
: S1

I3
def
= pr.

√
: R1 + (1− pr).

√
: I1

U3
def
= pr.

√
: R1 + (1− pr).

√
: U1

R3
def
= 1.

√
: R1

Popn
def
= S1{s} × I1{i} × U1{u} ×R1{r}d{

√
}

Fig. 1. Superspreader model of disease transmission

2 Model

In this section we give a description of the individual behaviours modelled and
also the mean field equations (MFE) that can be derived from the model (mak-
ing use of a rigorous algorithm described in [9] and [8]). In our the model the
population consists of four subpopulations: susceptibles, S; infecteds, I; super-
spreaders, U ; and recovereds, R.

WSCCS is a discrete time process algebra and one consequence of this is
that behaviour in our model is separated into several stages. For instance we
separate probabilistic behaviours (e.g. birth and death) from those involving
contact between individuals (e.g. transmission of infection). By doing this we
can more easily reason about the overall behaviour of the system. The different
stages happen sequentially during one iteration of the model which is equivalent

160From individual behaviour to population dynamics: changing scale in models of superspreaders

to one real time step. The length of the time step depends on the units of the
parameters.

We may naively assume that changing the order of these stages would have
no effect on the overall average behaviour of the model but in general this is
not true. Changing the order in which the stages happen changes the underlying
biological assumptions and also alters the resulting MFE [7].

The model in Fig. 1 can be used to represent superspreaders with either
increased infectiousness or increased probability of contact by specific choices
of parameters. The behaviour in the model in one timestep is separated into
three stages. In the first stage infected and superspreader individuals make a
probabilistic choice to make an infectious contact in the second stage of the
model. Susceptible and recovered individuals do not make any choices at this
stage of the model (S1 and R1 become S2 and R2 respectively). In addition the
infected individuals are able to make an infectious contact in the next stage of
the model with probability pc and superspreaders also choose to make contact
in the second stage, with probability pcu.

In the second stage disease transmission occurs. The infecteds and super-
spreaders that made the probabilistic choice to make contact in the first stage
each make a single contact (where contact means the type of contact in which
the disease could be transmitted and so will vary in its definition for different
diseases). Each type of individual (S, I, U and R) can be contacted once (be-
ing exposed to the disease). Only the susceptibles are affected by contact (we
assume that recovery from infection confers lifelong immunity) and susceptible
individuals that are contacted can contract the disease during the third stage of
the model.

In the third stage the susceptible individuals that were contacted probabilis-
tically decide to contract the disease or not. Individuals that were contacted by a
standard infected contract the disease with probability pi, while those contacted
by a superspreader become infected with probability piu. The newly infected indi-
viduals themselves become superspreaders with probability ps. At the same time
existing infected and superspreader individuals make the probabilistic choice to
recover, with probability pr.

The mean field equations that describe this generalised model are

St+1 = St −
pipciStIt + piupcuStUt

Nt
,

It+1 = (1− pr)It +
(1− ps)(pipciStIt + piupcuStUt)

Nt
,

Ut+1 = (1− pr)Ut +
ps(pipciStIt + piupcuStUt)

Nt
,

Rt+1 = Rt + pr(It + Ut), (1)

with Nt = St + It + Ut + Rt.

Chris McCaig, Mike Begon, Carron Shankland and Rachel Norman 161

2.1 Contact Superspreaders

The first situation considered features superspreader individuals that are capa-
ble of making more contacts than the standard infected individuals. For this
case there is no qualitative difference between contact from an infected or su-
perspreader. This is implemented by setting the probability that susceptible
individuals become infected after contact the same whether contact is with an I
or a U (pi = piu), and by having the probability that a superspreader will make
an infectious contact greater than the probability that an infected individual
will make a contact i.e. pcu = αpc for some α > 1.

By applying these parameters to the MFE we find equations to describe the
contact superspreaders model:

St+1 = St −
pipciSt(It + αUt)

Nt
,

It+1 = (1− pr)It +
(1− ps)pipciSt(It + αUt)

Nt
,

Ut+1 = (1− pr)Ut +
pspipciSt(It + αUt)

Nt
,

Rt+1 = Rt + pr(It + Ut), (2)

where α > 1 is a constant.
The transmission term in these equations,

piSt(ciIt + αciUt)
Nt

, (3)

is of the frequency dependent form [2]. This is because the behaviour described at
the individual level is frequency dependent - the probabilities of making contact,
pc and pcu, do not vary with the overall population size. It has already been
shown [7] that we can describe behaviour at the individual level that leads to
density dependent transmission terms, i.e. βStIt, in the resulting MFE. Here
frequency dependent transmission was used because it is more straightforward
to describe in WSCCS and is more reasonable for human diseases.

2.2 Supershedders

The second case we consider features supershedder individuals, with susceptible
individuals more likely to become infected after contact with a supershedder than
with a standard infected. In this case superspreaders and infecteds are equally
likely to make contact (pcu = pci). If a susceptible individual is contacted by
a supershedder the probability that it will become infected is greater than the
probability that infection will occur after contact with an infected individual
(piu = αpi for some constant α > 1).

From the WSCCS description of this model the mean field equations that we
derive are (2), the MFE for the contact superspreader model of Section 2.1. In
Section 2.3 we comment on the similarities between the MFE.

162From individual behaviour to population dynamics: changing scale in models of superspreaders

2.3 MFE

The two models considered lead to identical systems of mean field equations. This
suggests that the actual mechanism by which superspreaders arise is unimportant
in determining the population level equations that describe the mean behaviour
of the population.

If population level equations were written down directly to model a super-
spreader system, with frequency dependent transmission and density dependent
birth, they would not differ greatly from (2). Kemper [5] proposed an ordinary
differential equation model without births or deaths and featuring density de-
pendent transmission in which the transmission terms were: (r1I + r2U)S - the
rate at which susceptibles contract the disease; β(r1I + r2U)S - the rate at
which susceptibles become standard infected individuals; (1− β)(r1I + r2U)S -
the rate at which susceptibles become superspreaders. Kemper’s model did not
explicitly consider which of the two proposed mechanisms (increased contacts or
increased infectiousness) give rise to superspreaders. Instead it merely captures
the idea that a small proportion of the infected individuals are responsible for
the majority of new infections.

The difference with our MFE, however, is that we can be sure that our MFE
are a direct consequence of the individual level assumptions made, having been
rigorously derived from the individual based description of the model. This allows
us additional ways to study the system, for example by performing stochastic
simulations of the model allowing us to study the variability in the system as
well as the mean behaviour considered by the MFE.

It is worth noting that if all we are interested in is the mean behaviour then it
is possible to choose different parameter values that would give the same overall
mean behaviour from a model without superspreaders. For instance considering
a supershedder system (with piu = αpi), ps will be the mean proportion of
infected individuals that are superspreaders and it would be possible to design
a model without supershedders with a different probability of infection p′

i that
would have the same mean behaviour. This is done for our example by setting
α = 1 , so that the supershedders have the same behaviour as the standard
infecteds, and by setting pi = piu = (1 − ps)pi + αpips - all other parameter
values are unchanged.

3 Conclusions

Two different mechanisms have been proposed by which superspreaders may
occur in populations [5, 6]. By developing individual based models, and rigorously
deriving population level equations to describe the mean behaviour, we have
demonstrated that changing the mechanism at the individual level has little
effect on the population as a whole. In addition we have demonstrated that,
by choosing different parameter values, it is possible to write a model without
superspreaders in which the average behaviour will be identical to the model
with superspreaders.

Chris McCaig, Mike Begon, Carron Shankland and Rachel Norman 163

References

1. R.M. Anderson and R.M. May. Infectious diseases of humans : dynamics and
control. Oxford University Press, 1991.

2. M. Begon, M. Bennet, R.G. Bowers, N.P. French, S.M. Hazel, and J. Turner. A
clarification of transmission terms in host-microparasite models: numbers, densities
and areas. Epidemiology and infection, 129:147–153, 2002.

3. M. J. Hatcher and C. Tofts. The evolution of polygenic sex determination with
potential for environmental manipulation. Technical Report UMCS-95-4-2, De-
partment of Computer Science, University of Manchester, 1995.

4. H.W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42:599–653,
2000.

5. J.T. Kemper. Identification of superspreaders for infectious-disease. 48:111–127,
1980.

6. J.O. Lloyd-Smith, S.J. Schreiber, P.E. Kopp, and W.M. Getz. Superspreading and
the effect of individual variation on disease emergence. Nature, 438:355–359, 2005.

7. C. McCaig. From individuals to populations: changing scale in process al-
gebra models of biological systems. PhD thesis, University of Stirling, 2007.
http://hdl.handle.net/1893/398.

8. C. McCaig, R. Norman, and C. Shankland. Deriving mean field equations
from large process algebra models. Technical Report CSM-175, Department
of Computing Science and Mathematics, University of Stirling, March 2008.
http://www.cs.stir.ac.uk/research/publications/techreps/pdf/TR175.pdf.

9. C. McCaig, R. Norman, and C. Shankland. Process algebra models of population
dynamics. In Algebraic Biology, volume 5147 of Lecture Notes in Computer Science,
pages 139–155. Springer-Verlag, 2008.

10. R. Norman and C. Shankland. Developing the use of process algebra in the deriva-
tion and analysis of mathematical models of infectious disease. In Computer Aided
Systems Theory - EUROCAST 2003, volume 2809 of Lecture Notes in Computer
Science, pages 404–414. Springer-Verlag, 2003.

11. D. Sumpter. From Bee to Society: an agent based investigation of honeybee colonies.
PhD thesis, UMIST, 2000.

12. C. Tofts. Using process algebra to describe social insect behaviour. Transactions
of the Society for Computer Simulation, 9:227–283, 1993.

13. C. Tofts. Processes with probabilities, priority and time. Formal Aspects of Com-
puting, 6:536–564, 1994.

164From individual behaviour to population dynamics: changing scale in models of superspreaders

