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Abstract

The performance modelling of large-scale systems using discrete-state approaches is

fundamentally hampered by the well-known problem of state-space explosion, which

causes exponential growth of the reachable state space as a function of the num-

ber of the components which constitute the model. Because they are mapped onto

continuous-time Markov chains (CTMCs), models described in the stochastic process

algebra PEPA are no exception. This thesis presents a deterministic continuous-state

semantics of PEPA which employs ordinary differential equations (ODEs) as the under-

lying mathematics for the performance evaluation. This is suitable for models consist-

ing of large numbers of replicated components, as the ODE problem size is insensitive

to the actual population levels of the system under study. Furthermore, the ODE is

given an interpretation as the fluid limit of a properly defined CTMC model when the

initial population levels go to infinity. This framework allows the use of existing results

which give error bounds to assess the quality of the differential approximation. The

computation of performance indices such as throughput, utilisation, and average re-

sponse time are interpreted deterministically as functions of the ODE solution and are

related to corresponding reward structures in the Markovian setting.

The differential interpretation of PEPA provides a framework that is conceptually

analogous to established approximation methods in queueing networks based on mean-

value analysis, as both approaches aim at reducing the computational cost of the anal-

ysis by providing estimates for the expected values of the performance metrics of in-

terest. The relationship between these two techniques is examined in more detail in

a comparison between PEPA and the Layered Queueing Network (LQN) model. Gen-

eral patterns of translation of LQN elements into corresponding PEPA components are

applied to a substantial case study of a distributed computer system. This model is

analysed using stochastic simulation to gauge the soundness of the translation. Fur-

thermore, it is subjected to a series of numerical tests to compare execution runtimes

and accuracy of the PEPA differential analysis against the LQN mean-value approxima-

tion method.

Finally, this thesis discusses the major elements concerning the development of a

software toolkit, the PEPA Eclipse Plug-in, which offers a comprehensive modelling en-

vironment for PEPA, including modules for static analysis, explicit state-space explo-

ration, numerical solution of the steady-state equilibrium of the Markov chain, stochas-

tic simulation, the differential analysis approach herein presented, and a graphical

framework for model editing and visualisation of performance evaluation results.
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Chapter 1

Introduction

Performance evaluation is concerned with the analysis of the dynamic behaviour of a

system to study the amount of work processed with respect to time. In particular, com-

puter performance evaluation focusses on hardware/software systems. Common mea-

sures of interest include response time, which measures the time taken by the system

to process some unit of work; throughput, giving the frequency at which work is done;

and utilisation, the proportion of time that a component is busy serving some request.

The choice of the performance evaluation tool which is most appropriate to a specific

study depends upon the architectural characteristics as well as the development stage

of the system under consideration. Early analysis is typically conducted on a model, ei-

ther because the actual system has not been developed or is incomplete. In such a case,

the model is mainly used for prediction. One notable example is capacity planning,

which is conducted to estimate the processing power needed to meet assigned quality-

of-service agreements. At later stages, performance evaluation is essential for optimal

fine-grained tuning of the system’s parameters. Here, evaluation may be carried out

directly on the actual system, for example by means of field measurements.

This thesis is concerned with performance evaluation techniques based on ana-

lytical models, where the dynamics of the systems under study is associated with

a mathematical structure whose solution gives the performance estimates of inter-

est. Continuous-time Markov chains (CTMCs) are an established mathematics for the

quantitative analysis of systems, partly because a long record of successfully validated

case studies [91] and well understood solution techniques based on linear algebra,

amenable to efficient computer implementation [136]. However, as with most discrete-

state analysis techniques, the major drawback is the well-known problem of state-space

explosion, i.e., the state space of the chain grows exponentially with the number of

individuals in the system. This problem is only partially alleviated by ingenious re-

search on largeness avoidance, devoted to exploiting symmetries in the model in order

1



2 Chapter 1. Introduction

to obtain smaller (i.e., lumped) CTMCs which still preserve most of the information on

the stochastic behaviour of the original process [29], or largeness tolerance, whereby

efficient methods for the storage and the solution of very large chains are sought (e.g.,

disk-based solvers [56]).

The problem of state-space explosion is particularly detrimental when modelling

large-scale systems. At a reasonable level of abstraction, such systems may be described

as population models, i.e., they consist of large populations of statistically identical in-

dividuals. For instance, a typical software server is implemented as a multi-threaded

application where a thread handling a request for service may be regarded as being

indistinguishable from any other. In real-life applications, clients of such systems are

usually in the order of thousands (or even millions) and for most practical purposes

they can also be assumed to have identical behaviour. A stochastic treatment of these

models by numerical solution of the associated Markov chain is only feasible for rel-

atively small (and often unrealistic) population sizes. Difficulties in the computation

also arise when one employs analysis methods which avoid explicit state enumeration.

For instance, stochastic simulation has lower space requirements, however it may re-

quire very long execution runtimes due to the usually large number of independent

replications necessary for statistical significance of the results.

An alternative approach to performance evaluation may be offered by deterministic

models, which use ordinary differential equations (ODEs) as the underlying mathemat-

ical structure. Here, the temporal evolution of the population of inherently discrete en-

tities is approximated in a continuous fashion. As a result, large-scale models are much

easier to handle because the actual population size of the system under study does not

impact on the ODE representation. Despite their apparently contrasting modelling ap-

proach, in many circumstances it is possible to establish a very useful relationship of

convergence between the stochastic and deterministic representation, where the ODE

is interpreted as the fluid limiting behaviour of a family of CTMCs associated with the

model under evaluation and parametrised by a system variable [103]. For instance, this

property justifies the use of ODEs for the deterministic modelling of chemical reactions

(which admit an accurate Markov chain representation under specific conditions [76])

when the volume of the solution is sufficiently large [105]; in systems biology the fa-

mous Lotka-Volterra model of a predator-prey system (e.g., [149]) may be viewed as

the continuous interpretation of an associated CTMC when the number of individuals is

high [103]. In computing disciplines, this relationship has been used in the continuous

approximation of queueing systems [114] and routing protocols (e.g., [34,153]).

This thesis focuses on a differential-equation representation of population-based

performance models described in the process calculus PEPA [92]. As with most stochas-
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tic process calculi, the language has a semantics which maps onto a CTMC for the quan-

titative analysis, which is therefore prone to the same state-space explosion problem

discussed above. Previous research has been devoted to exploiting the rich framework

of equivalence relations defined over the process-algebraic terms for inducing a lumped

Markov chain [79], and to defining efficient stochastic simulation algorithms [24]. The

main contribution of this thesis is to demonstrate that there exists a result of con-

vergence between a Markovian representation of PEPA and an associated differential

interpretation. This objective is pursued by developing an operational semantics for

the language—called population-based semantics—which leads to a compact symbolic

representation of a family of CTMCs underlying the model and its corresponding ODE

fluid limit. This semantics provides a formal account of earlier approaches to deter-

ministic interpretations of PEPA (e.g., [93]), and substantially extends their scope of

applicability by incorporating all the operators of the language and removing earlier

assumptions on the syntactical structure of the models amenable to this analysis.

The solution to a properly defined initial value problem of the ODE gives an ap-

proximation to the time-course evolution of the probability distribution of the CTMC

of the PEPA model. For some performance studies however this information cannot

be used directly to reason about performance. Instead, typical indices of performance

may be expressed using suitable reward structures, i.e., functions which assign to each

state of the chain a real number (the reward) which may interpreted as giving the level

of performance (or alternatively, the cost) when the system is in that state. Clearly,

the evaluation of a reward requires the knowledge of the probability distribution of the

associated CTMC, therefore in the Markovian setting this analysis presents similarly

problematic computational issues when dealing with large population models. With

this respect, this thesis examines under which conditions the evaluation of such rewards

over the population-based family of CTMCs enjoys convergence to a deterministic esti-

mate which is a function of the ODE limit. Within this framework are characterised the

notions of throughput, utilisation, and response time for a PEPA model.

The major advantage in employing the differential interpretation of PEPA is with

regard to the efficiency of the analysis, which is often many orders of magnitude faster

than the stochastic treatment (either by simulation or by numerical solution) of the

corresponding CTMC. Conceptually, this approach is analogous to the approximate

solution methods of queueing networks based on mean-value analysis for the compu-

tation of steady-state performance estimates. This thesis investigates this analogy in

more detail, discussing a comparison between PEPA and the Layered Queueing Net-

work (LQN) model, a modelling technique which captures rich forms of behaviour of

distributed computer systems such as multiple resource possession, software and hard-
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ware contention, probabilistic branching, and fork/join synchronisation. Each element

of the LQN model is given an interpretation as a PEPA component and interactions be-

tween distinct elements are expressed as synchronisation actions in PEPA. The indices

of performance available in the LQN model are translated into corresponding PEPA

reward structures. This process-algebraic interpretation of the LQN model is practi-

cally applied to a case study of a distributed system, which is analysed to assess the

relative strengths and weaknesses of the approximate solution techniques of the two

formalisms.

Thesis organisation Chapter 2 gives a basic overview of Markov chains and related

high-level modelling techniques for performance evaluation, discussing the research

concerned with tackling state-space explosion. Chapter 3 presents background material

for PEPA with particular focus on the topic of deterministic approximation. Chapter 4

presents the population-based semantics and proves the result of convergence to an

ODE limit. The evaluation of deterministic reward structures is discussed in Chapter 5.

The case study comparing this approach with the Layered Queueing Network model

is presented in Chapter 6. The theory developed in this thesis was implemented in a

software toolkit, the PEPA Eclipse Plugin, which features comprehensive support for the

language. The numerical results reported here were obtained using this tool. The tool

architecture and its components of major interest are discussed in Chapter 7. Finally,

Chapter 8 concludes the thesis by summarising the main results and suggesting possible

future avenues of research. The complete differential equation models of the examples

examined in this thesis are provided in the Appendix.



Chapter 2

Background

This chapter provides a basic introduction to the theory of Markov processes (Sec-

tion 2.1). Stochastic process algebras are put into a more general context by discussing

three other well-known modelling techniques for performance evaluation: queueing

networks (Section 2.2), stochastic Petri nets (Section 2.3), and stochastic automata

networks (Section 2.4). Despite many notational and semantic differences, they all

provide a means of shielding the modeller from a direct description of the problem in

terms of the underlying stochastic process. Constructing a description of the problem

at that level would typically be tedious and error-prone. Instead, high-level languages

such as these provide a framework where models may be expressed more naturally in

terms of entities which are more closely related to the actual physical system under

consideration. Emphasis will be given in this overview to the main measures taken to

tackle state-space explosion in these formalisms.

2.1 Performance Evaluation with Markov Processes

This section gives an introductory account of Markov processes with the intention of

highlighting the computational implications of the analysis; a more formal and detailed

treatment can be found in many of the books available on this topic (e.g., [98,117]).

2.1.1 Markov Chains

Let S be a finite set of size N. Each element s ∈ S is called a state and S is called the

state space. Let {X(n),n ∈ N0} be a stochastic process taking values in S. This process is

said to be a discrete-time Markov chain (DTMC) if the following property holds:

P{X(n+1) = sn+1 |X(n) = sn,X(n−1) = sn−1, . . . ,X(0) = s0}=

P{X(n+1) = sn+1 |X(n) = sn} , for all n and s0,s1, . . . ,sn+1 ∈ S.

5
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The one-step conditional probability of making a transition from state si to state s j at

step n, denoted by pi, j(n), is defined as:

pi, j(n) = P
{

X(n+1) = s j |X(n) = si
}

, for all si,s j ∈ S

with the condition ∑ j pi, j(n) = 1. The DTMC is said to be homogeneous if these transition

probabilities do not depend on n. Thus, it is possible to write

pi, j = P
{

X(n+1) = s j |X(n) = si
}

,∀n ∈ N0,si,s j ∈ S.

Let P = [pi, j]N×N (probability matrix), πk(n) = P{X(n) = sk} and π(n) = [π1(n),π2(n),

. . . ,πN(n)]. By the law of total probability,

π(n+1) = π(n)P (2.1)

Given an initial probability distribution π(0), the probability distribution at any step

π(n) can be obtained by applying (2.1) recursively, yielding

π(n) = π(0)Pn (2.2)

The stationary distribution π of a DTMC is defined as

π = lim
n→∞

π(n)

If such a limit exists, π is the solution to the following system of linear equations{
πP = π

∑i πi = 1
(2.3)

where the first equation imposes the condition of invariance of the distribution in the

limit and the second equation requires that π be a probability distribution.

Similar definitions apply for a continuous-time Markov chain (CTMC), where the

stochastic process is indexed by reals instead of integers, denoted by {X(t), t ∈ R≥0}. In

particular, the Markov condition is now written as

P{X(tn+1) = sn+1 |X(tn) = sn,X(tn−1) = sn−1, . . . ,X(t0) = s0}=

P{X(tn+1) = sn+1 |X(tn) = sn} , for all tn+1 > tn > .. . > t0 and s0,s1, . . . ,sn+1 ∈ S

and the transition probabilities for a non-homogeneous CTMC are

pi, j(t,θ) = P
{

X(θ) = s j |X(t) = si
}

,∀si,s j ∈ S,θ > t.

The class that will be mostly considered in this thesis is that of homogeneous CTMCs,

where the above probabilities only depend upon the difference θ− t ≡ ∆t, i.e.,

pi, j(∆t) = P
{

X(t +∆t) = s j |X(t) = si
}

,∀si,s j ∈ S,∆t > 0.
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These probabilities are fixed such that the probability that the process makes a transi-

tion in a time interval ∆t from si to s j, i 6= j, is proportional to ∆t, i.e.,

pi, j(∆t) = qi, j∆t +o(∆t), i 6= j (2.4)

where qi, j is a nonnegative real. Then, for every i,

P{X(t +∆t) = si |X(t) = si}= 1−∑
i 6= j

P
{

X(t +∆t) = s j |X(t) = si
}

= 1−∑
i 6= j

qi, j∆t +o(∆t)

hence

pi,i(∆t) = 1−∑
i6= j

qi, j∆t +o(∆t). (2.5)

The quantities qi, j, i 6= j and qi,i = −∑i 6= j qi, j are interpreted as the transition rates for

the process, which is thus completely characterised by the transition (or probability)

matrix Q = [qi, j]N×N . Let π(t) = [π1(t),π2(t), . . . ,πN(t)] be the probability distribution of

the chain at time t. Calculating πi(t+∆t)−πi(t)
∆t via (2.4–2.5) and taking the limit ∆t → 0

yields the following equation (in matrix form):

dπ(t)
dt

= π(t)Q (2.6)

which, for an initial distribution π(0), has solution

π(t) = π(0)eQt . (2.7)

The stationary (or steady-state) probability distribution π is defined as

π = lim
t→+∞

π(t)

If this stationary distribution exists, it is obtained by setting the derivatives of (2.6) to

zero and imposing that the solution be a probability distribution, yielding the equations{
πQ = 0

∑i πi = 1
(2.8)

2.1.2 Numerical Solution

Equations (2.7) and (2.8) (and similarly (2.2) and (2.3)) are the fundamental tools

for the study of the behaviour of the Markov process, and much research has focussed

over the years on developing efficient solution techniques. Equation (2.7) essentially

requires the computation of a matrix exponential. Clearly, a naive approach is only

feasible for small matrices, since in general it requires multiplication of full matrices

even if the original problem Q is sparse (as is the case in most performance evalua-

tion applications). In [115], Moler and Van Loan examine nineteen different solution
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methods, discussing their properties and related problems of round-off errors, trun-

cation, and conditioning. For large state spaces, a popular method is uniformisation

(e.g., [126,137]), in which an approximation is based on a truncated Taylor series ex-

pansion (with quantifiable error bounds) of the matrix exponential P = 1
α

Q+ I, where

α = maxi|qi,i| and I is the identity matrix of size N. The matrix P has only nonnegative

terms lying in the range [0,1], which yields much higher numerical stability than a simi-

lar Taylor expansion of the matrix Q. However, each iteration of the algorithm requires

one matrix-vector multiplication of size N, which makes this approach practically appli-

cable only for moderately large models. Furthermore, the computation becomes even

more onerous when the transient probability distribution is to be computed at various

time points (e.g., cfr. [138]).

Problems of scalability also arise for the numerical solution of (2.8) [136]. Itera-

tive approaches requiring one matrix-vector multiplication per iteration are preferred

over direct solution methods based on Gaussian elimination (which run in O(N3) time),

and some are particularly suitable for parallelisation. Effective out-of-memory storage

techniques (e.g., [12, 56]) have widened the scope of applicability of Markovian anal-

ysis for systems up to about one billion states. However, as well as the typically large

computation effort required, one should be wary of potential numerical problems when

analysing such large models [13].

2.1.3 Lumpability

Used in conjunction with efficient numerical solvers, aggregation techniques can effec-

tively help to tackle state space explosion. The idea is to partition the original state

space into M groups (ideally M � N) and construct an aggregated Markov chain in

which each state subsumes all the states of the original chain within a partition group.

In ordinary lumpability, the partition is chosen such that, for any two states si,si′ within

a given group, the sum of the transition rates from si to all states of another partition

group is equal to the sum of the transition rates from si′ to the same group [98]. A

number of results relating the transient and stationary distributions of the aggregated

Markov chain with the corresponding distributions of the overall Markov chain have

been provided in [29].

Lumpability has been studied in many performance modelling situations. In par-

ticular, much attention has been paid to the problem of exploiting symmetries in high-

level formalisms which induce lumpable partitions in the underlying Markov chains. Of

crucial importance are techniques which do not require generating the overall Markov

chain, which may often be prohibitive in terms of time and space. Indeed, the most ef-

ficient algorithm for optimal state-space lumping has been shown to run in O(K logN),
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where K is the number of transitions of the chain [57].

2.2 Queueing Networks

The simplest form of a queueing network is termed a queueing system and consists of

one service station with one or more independent servers, accepting a flow of customers

which await service in a queue if all servers are busy, and leave the system after they are

served. Queueing systems have been studied extensively and a rich body of literature

is available (e.g., [73,99,109,130]).

A queueing system is completely characterised by five attributes, usually repre-

sented in the Kendall notation A/B/X/Y/Z, where:

A describes the arrival process, such as Markovian (i.e., Poisson), deterministic,

Erlang, or a more general phase-type distribution.

B describes the distribution of service times.

X is the number of independent servers.

Y is the maximum queue size (excluding the places at the servers).

Z is the queue discipline, determining how customers in the queue are selected for

service when one server is available to process further requests. Typical examples

are First Come First Served, Last Come First Served, Processor Sharing, Random

Order.

When the number of customers in the queue exceeds Y then other incoming clients are

not accepted. For many analytical results to apply the queue size must be of infinite

size, capturing a situation in which the queue has the capacity to grow as large as it

needs to accommodate all incoming requests. Under assumptions of independent and

exponential distributions for arrivals and service times (which may be relaxed to more

general distributions via suitable phase-type approximations), a queueing system is rep-

resented by an underlying CTMC in which a state gives the customer population count.

For specific classes of systems, e.g., M/M/1 (Poisson arrivals, exponentially distributed

service times, single-server with infinite queue length and First Come First Served pol-

icy), M/M/m (m independent servers), or M/M/∞ (infinite number of servers), the

solution for the equilibrium distribution admits a closed form. Many performance met-

rics may be readily evaluated from this closed-form solution.

Queueing networks model a set of interconnected service stations with a population

of customers moving through the network according to some routing policy. Given a

Markovian queueing network, if it admits external arrivals (an open network) then
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the state space is infinite and analytical closed-form solutions exist only for specific

cases which exhibit certain regularities. Furthermore, in the case of closed networks,

where customers neither arrive nor leave the system, the cardinality of the state space

grows very rapidly with the number of service centres and the customer population.

For instance, a Markovian queueing network with S service centres and C customers

has
(S+C−1

C

)
states, making the analysis computationally intractable even for relatively

small networks.

One of the most important results aimed at tackling this problem is the product-

form solution, available for a large class of queueing networks [11, 35, 37, 81, 97]. In

networks exhibiting product form the stationary distribution of the underlying Markov

process can be computed without having to solve the associated system of linear equa-

tions (2.8). For a network with state c = (c1,c2, . . . ,cS), where ck,1≤ k ≤ S, denotes the

number of customers at the k-th service station, the solution π(c) has the general form

π(c) =
1
G

d(c)
S

∏
k=1

gk(ck),

where G is a normalising constant, d depends on the network parameters and gk is a

function of the characteristics of the k-th station. Intuitively, a product-form solution

describes the probability distribution of the entire system as the product of quantities

which are functions of the constituent service centres. This rationale has cross-fertilised

into other performance evaluation formalisms with a semantically defined notion of

compositionality, as discussed later in this chapter.

Except for cases in which G has a closed-form solution, the complexity for its com-

putation is generally of the order of the state space size (all the non-normalised proba-

bilities have to be summed over). The convolution theorem [30] can be used to reduce

the solution effort by providing an efficient recursive formulation for G. The computa-

tion of G is avoided altogether with mean-value analysis [127] at the cost of giving only

the expectations of the stochastic variables of interest. However, in these and other re-

lated methods (e.g., [52, 53, 108]) the computational cost grows rapidly as a function

of some important model parameters such as the customer population or the number

of distinct classes of customer behaviour [120]. To overcome this problem, alternative

approaches such as the Linearizer [36] or the Bard and Schweitzer [10,131] algorithms

have gained popularity as very efficient approximate solution techniques.

The widespread acceptance of queueing theory in the software performance eval-

uation community has fostered a large body of research on extending this theory to

capture the dynamics which naturally emerge from complex distributed software sys-

tems. A fundamental contribution of this line of inquiry is the notion of layered servers.

In Woodside’s Stochastic Rendezvous Network model servers may also act as clients
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for services offered by other lower-level servers. In addition, a service may consist of

two or more phases, in which the first phase models the time between the request and

the corresponding reply to the client, whereas the subsequent ones describe server-

side independent computation [151]. Rolia’s Method of Layers proposes a similar

approach for the description of software/hardware models with layers and resource

contention [128]. The Layered Queueing Network (LQN) model has been shown to

include all these features and to support further extensions, including activity graphs

for sequence, conditional (probabilistic) branching, fork/join semantics, and quorum

consensus synchronisation [68].

It is worth emphasising that all these analysis techniques are only concerned with

stationary probability distributions (and related performance indices). If transient anal-

ysis is to be performed, then the standard tools discussed in Section 2.1.2 (if the queue

is Markovian) or simulation appear to be the most viable routes. As anticipated in

Chapter 1, a comparison between the performance evaluation approach presented in

this thesis and queueing networks (in particular, the LQN model) is presented in Chap-

ter 6.

2.3 Stochastic Petri Nets

Stochastic Petri nets are a conservative extension of classical Petri nets with the notion

of time associated with each transition [116]. By assuming exponentially distributed

activities, the reachability graph of the net has a stochastic interpretation in terms of

a CTMC. The modelling paradigm with Petri nets is an alternative to that of queueing

networks, and is particularly suitable to capture common execution policies in concur-

rent systems such as fork/join synchronisation and exclusive access. These features are

more difficult to capture using product form queueing networks.

Numerous extensions have been proposed over the last two decades to enrich the

expressiveness of this formalism. The most notable contribution is that of Generalised

Stochastic Petri nets [6], which introduces the notion of immediate transitions. This

is a particularly useful device to distinguish the behaviour of transitions which take

time and others which denote the execution of some logical condition, whose duration

in the actual system is negligible compared to the time-scale of the non-immediate

transitions of the net. Several lines of research have been pursued to increase the

solution capabilities for large-sized models, including the identification of structural

product-form criteria (e.g., [9, 50, 89]) and extensions (called Stochastic Well Formed

Petri Nets) in which symmetries are detected at the syntactic level, allowing for a direct

construction of the lumped state space [39].
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2.4 Stochastic Automata Networks

Stochastic automata networks are particularly suitable for modelling distributed sys-

tems [121]. A system is represented by a collection of automata, each representing a

sequential entity evolving through a set of local states. The transitions between states

are determined by two classes of events: a local event causes the transition of one sin-

gle automaton in isolation, i.e., without cooperation with other agents; synchronising

events change the state of two or more automata simultaneously. The transitions are as-

sociated with rates such that, under the Markovian assumption, the automata network

gives rise to an underlying CTMC.

The problem of state-space explosion is partially mitigated by the use of a tensor

(Kronecker) form, which permits a much more compact representation of the generator

matrix than the explicit enumeration of the reachable states of the system. The vector-

matrix multiplications needed for transient and steady-state analysis of the Markov

chain are also expressed in tensor algebra, leading to solution methods with relatively

low memory requirements. Despite further research aimed at improving memory and

computation time [16,65], Kronecker algorithms still require that at least the probabil-

ity vector be stored in memory, thus limiting their applicability when the cardinality of

the state space is very large.1 A symmetry reduction technique based on lumping has

been provided for networks with replicated automata [15].

1This remark also applies to other formalisms which admit similar tensor algebra representations—for
instance, superposed stochastic automata, a subclass of Generalised Stochastic Petri Net [60].
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PEPA

The purpose of this chapter is twofold. First, it gives an overview (in Section 3.2) of the

stochastic process algebra PEPA, with emphasis on the notions which will be used in the

subsequent chapters of this thesis. Second, it reviews previous work regarding efficient

analysis techniques. Section 3.3 discusses the approaches developed in the Markovian

setting while Section 3.4 is concerned with deterministic approximations via ordinary

differential equations.

3.1 Process Algebra for Performance Evaluation

In the pioneering work by Milner [113] and Hoare [95], process algebras were devel-

oped as formal languages for the qualitative modelling of systems based on distributed

computation. The rich body of theory available in this context prompted many re-

searchers to extend process algebras with concepts intended for performance evalua-

tion, reminiscent of a somewhat similar development made by the Petri net research

community. The term stochastic process algebra refers to an extension of classical pro-

cess algebras with the notion of exponentially distributed activities, giving rise to a

reachability graph which is isomorphic to a CTMC. The powerful results in the classical

setting—most notably, bisimulation techniques to reason about equivalences between

processes—are recovered by stripping away the rate information in the stochastic inter-

pretation. Furthermore, novel time-aware notions of equivalence have been shown to

have important implications with respect to the underlying Markov process. For exam-

ple, Hillston showed that the strong equivalence relation induces a lumpable partition

of the Markov process [92].

Numerous stochastic process algebras have been developed, including PEPA [92],

TIPP [82], EMPA [17], and the stochastic π-calculus [124]. The fundamental mod-

elling paradigm is based on the notion of agents which engage in activities. Distinct

13
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agents run in parallel if their activities do not require interaction with the environment

(i.e., other agents), otherwise a synchronisation barrier coordinates the execution of

an activity shared among two or more agents.1

3.2 Introduction to PEPA

A complete description of PEPA is available in Hillston’s book [92]. Here, the main

concepts of the language are described by means of a running example, which will be

also used in the remainder of this thesis for illustrative purposes. PEPA is a CSP-like

stochastic process algebra supporting the following operators.

Prefix

(α,r).E denotes a process which performs an action of type α and behaves as E subse-

quently. The activity rate r is taken from R>0∪{n> : n ∈N}. If r ∈R>0 then the activity

is associated with an exponential distribution with mean duration 1/r. The special

symbol > specifies a passive rate and may be used to model unbounded capacity. The

natural n expresses a weight which is useful to assign relative execution probabilities

to passive activities with the same type (e.g., in a choice, see below). When n is not

specified it is assumed n = 1. The duration of an activity involving passive rates is de-

termined by the active rate of some other synchronising component in the system. The

set of all the activities (α,r) in a PEPA model is denoted by Act and the set of all action

types is denoted by A .

Choice

E + F specifies a component which behaves either as E or as F. The activities of both

operands are enabled and the choice will behave as the operand which first completes

(race condition). For instance, given the choice component (α,r).E +(β,s).F with r,s ∈
R>0, it behaves as E (resp., F) with probability r/(r + s) (resp., s/(r + s)).

Constant

A
def= E is used for recursion. Cyclic definitions are useful to impose steady-state be-

haviour of the underlying Markov process. For instance, letting r,s be positive reals,

the component A
def= (α,r).(β,s).A denotes a process which cycles forever executing an

α-activity and a β-activity sequentially.

1Unifying approaches aiming at capturing the similarities across stochastic process algebras have been
proposed recently [55,100].
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Cooperation

E BC
L

F is the compositional operator of PEPA. Components E and F synchronise over

the set of action types in set L; other actions are performed independently. For exam-

ple, (α,r1).(β,s).E BC
{α}

(α,r2).(γ, t).F is a composition of two processes which execute α

cooperatively. Then, they perform actions β and γ independently and behave as E and

F, respectively.

Cooperating components need not have a common view of the duration of shared

actions. The semantics of PEPA specifies that the rate of a shared action is the slowest

of the individual rates of the synchronising components, e.g., min(r1,r2) in the example

above.

The parallel operator ‖ is sometimes used as shorthand notation for a cooperation

over an empty set, i.e., BC
/0

. The notation E[N] indicates N independent copies of a

component E and will be used as the abbreviated form of E ‖ E ‖ · · · ‖ E︸ ︷︷ ︸
N

. Clearly, this is

only for syntactic convenience and no expressiveness is added by this compact repre-

sentation.

Hiding

E/L relabels the activities of E with the silent action τ for all types in L. Thus,
(
(α,r1) .E/

{α}
)
BC
{α}

(α,r2).F does not cooperate over α because the process in the left-hand side of

the cooperation performs a transition (τ,r1) to E.

Grammar

An interesting class of PEPA models comprises those which can be generated by the

following two-level grammar:

S ::= (α,r).S | S +S | AS, AS
def= S

C ::= S | C BC
L

C | C/L | AC, AC
def= C

(3.1)

The first production defines sequential components, i.e., processes which only exhibit

sequential behaviour (by means of the prefix operator), with branching (by means of

the choice operator). The second production defines model components, in which the

interactions between the sequential components are expressed through the cooperation

and hiding operators. The system equation designates the model component that de-

fines the environment which embraces all of the behaviour of the system under study.

In the remainder, system equations are denoted with constants such as System. Models

from this grammar satisfy a necessary condition for the irreducibility of the underly-
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ing CTMC [92, Theorem 3.5.3]. Unless otherwise stated, only such models will be

considered throughout this thesis.

Example 1 (PEPA model with cooperation).

P def= (α1, p).P′

P′ def= (α2, p′).P

Q def= (α1,q).Q′

Q′ def= (α3,q′).Q

System1
def= P[NP] BC

{α1}
Q[NQ]

This model comprises two arrays of components, with initial state P and Q, where each pair

(P,Q) can cooperate over the action type α1. There are NP instances of P and NQ instances

of Q. P and Q carry out independent actions α2 and α3, respectively, before returning to

the state in which α1 may be performed. Without loss of generality, it is assumed that

NP,NQ > 1. The derivations that follow are also valid for NP = NQ = 1, although this case

leads to less insightful and simpler derivation trees and recursion stacks.

Definition 1. The apparent rate of action α in process E, denoted by rα (E), indicates the

overall rate at which α can be performed by E. It is recursively defined as follows:

rα ((β,r) .E)=

{
r if β = α

0 if β 6= α

rα (E +F)=rα (E)+ rα (F)

rα

(
E BC

L
F
)

=

{
min(rα (E) ,rα (F)) if α ∈ L

rα (E)+ rα (F) if α 6∈ L

rα (E/L)=

{
rα (E) if α 6∈ L

0 if α ∈ L

The following arithmetic for passive rates is defined:

min(r,n>) = r, for any r ∈ R>0 and n ∈ N
min(m>,n>) = k>, where k = min(m,n), for any m,n ∈ N

m>+n> = k>, where k = m+n, for any m,n ∈ N
m>
n> = m

n , for any m,n ∈ N

(3.2)

According to Definition 1, for the array of sequential components P[NP] the apparent

rate of α1 is

rα1 (P[NP]) = NP rα1 (P) , (3.3)
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and this holds for any α ∈ A and any NP because all the cooperation sets amongst such

components are empty.

The semantics of PEPA is defined in the style of Plotkin’s Structured Operational

Semantics [122] and is shown in Table 3.1. Given a PEPA component E, the operational

semantics induces the derivative set2, denoted by ds(E), which is the set of the possible

states reachable from E. The term local derivative denotes a state reachable from a

sequential component (which is itself a sequential component, as can be seen from

(3.1)). A derivation graph whose nodes are in ds(E) and arcs in ds(E)×Act × ds(E)

indicates all the transitions between each pair of derivatives of E. Arcs are taken with

multiplicity corresponding to the number of distinct inference trees which give the same

transition. The derivation graph is ultimately mapped onto a CTMC in which each state

corresponds to a derivative in ds(E).

The states reachable from the system equation System1 in Example 1 are obtained

by constructing derivation trees which begin with the transitions enabled by the con-

stituting sequential components. By rules S0 and A0 the following two transitions can

be inferred for P and Q:

P
(α1,p)−−−→ P′ (3.4)

Q
(α1,q)−−−→ Q′ (3.5)

The dynamic behaviour of the leftmost component P of the array can be collected by

NP−1 applications of rule C0. The first application has the form:

P
(α1,p)−−−→ P′

P ‖ P
(α1,p)−−−→ P′ ‖ P

Then, for 1≤ i≤ NP−2, the other NP−2 applications are of type

P ‖ P[i]
(α1,p)−−−→ P′ ‖ P[i]

P ‖ P[i] ‖ P
(α1,p)−−−→ P′ ‖ P[i] ‖ P

For i = NP−2, the conclusion of this rule may be written as

P[NP]
(α1,p)−−−→ P′ ‖ P[NP−1] (3.6)

The behaviour of the leftmost component Q can be collected in a similar way, leading

to a transition in the form

Q[NQ]
(α1,q)−−−→ Q′ ‖ Q[NQ−1] (3.7)

2The term derivative is intended in PEPA to denote a reachable state of a component. It is not to be
confused with the notion of derivative in calculus, which will be used for the deterministic interpretation
of the stochastic process underlying a PEPA model.
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Table 3.1: Markovian semantics of PEPA (from [92]).

Prefix

S0 :
(α,r).E

(α,r)−−→ E

Choice

S1 :
E

(α,r)−−→ E′

E +F
(α,r)−−→ E′+F

S2 :
F

(α,r)−−→ F′

E +F
(α,r)−−→ E +F′

Cooperation

C0 :
E

(α,r)−−→ E′

E BC
L

F
(α,r)−−→ E′ BC

L
F

, α 6∈ L

C1 :
F

(α,r)−−→ F′

E BC
L

F
(α,r)−−→ E BC

L
F′

, α 6∈ L

C2 :
E

(α,r1)−−−→ E′ F
(α,r2)−−−→ F′

E BC
L

F
(α,R)−−−→ E′ BC

L
F′

, α ∈ L R =
r1

rα(E)
r2

rα(F)
min(rα(E),rα(F))

Hiding

H0 :
E

(α,r)−−→ E′

E/L
(α,r)−−→ E′/L

, α 6∈ L H1 :
E

(α,r)−−→ E′

E/L
(τ,r)−−→ E′/L

, α ∈ L

Constant

A0 :
E

(α,r)−−→ E′

A
(α,r)−−→ E′

, A
def= E

Finally, by applying rule C2 to (3.6) and (3.7),

P[NP] BC
{α1}

Q[NQ]
(α1,R)−−−→ P′ ‖ P[NP−1] BC

{α1}
Q′ ‖ Q[NQ−1] (3.8)

where, by rule C2 and (3.3),

R =
p

rα1 (P[NP])
q

rα1 (Q[NQ])
min(rα1 (P[NP]) ,rα1 (Q[NQ]))

=
p

NP rα1 (P)
q

NQ rα1 (Q)
min(NP rα1 (P) ,NQrα1 (Q))

=
p

NP p
q

NQ q
min(NP p,NQ q)

=
1

NP

1
NQ

min(NP p,NQ q)

(3.9)
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The conclusion of (3.8) is not the only transition enabled by the System1, because each

individual component P can be paired with each component Q to carry out action α1.

Hence, P[NP] BC
{α1}

Q[NQ] enables NP×NQ transitions to distinct states of type

P ‖ · · · ‖ P ‖ P′ ‖ P ‖ · · · ‖ P︸ ︷︷ ︸
NP sequential components

BC
{α1}

Q ‖ · · · ‖ Q ‖ Q′ ‖ Q ‖ · · · ‖ Q︸ ︷︷ ︸
NQ sequential components

(3.10)

which only differ in the locations of the components P′ and Q′. Since each transition

occurs at rate R, the exit rate from P[NP] BC
{α1}

Q[NQ] is

NP×NQ×R = min(NP p,NQq) (3.11)

and the factor 1/(NP×NQ) is the probability that one specific pair of components makes

that transition.

3.3 Aggregation Techniques

Each of the states of kind (3.10), say P′ ‖ P[NP−1] BC
{α1}

Q′ ‖ Q[NQ−1], has transitions to

(NP− 1)× (NQ− 1) distinct states in which there are two copies of P′, (NP− 2) copies

of P, two copies of Q′, and (NQ − 2) copies of Q. Similarly, each state, say P′[2] ‖
P[NP − 2] BC

{α1}
Q′[2] ‖ Q[NQ − 2], has transitions to (NP − 2)× (NQ − 2) distinct states in

which there are three copies of P′, (NP−3) copies of P, three copies of Q′, and (NQ−3)

copies of Q. Overall, this model will have a state space of cardinality 2NP+NQ , clearly

unsatisfactory for large-scale models.

The aggregation technique presented in [79] goes a long way toward alleviating

this problem. At the core of this algorithm is a strong notion of equivalence in PEPA

called isomorphism [92, Definition 6.2.2]. Informally, it states that two components E

and E′ are isomorphic (written E = E′) if there is a one-to-one correspondence between

the derivatives of E and those of E′ such that corresponding derivatives enable the

same activities (i.e., same action types and rates), and the resulting derivatives are in

the same correspondence. An equational law for isomorphism states that, for any E and

F, E ‖ F = F ‖ E [92, Proposition 6.3.4]. The aggregation algorithm uses this equational

law to determine a canonical representation of a derivative in which the constituting se-

quential components are arranged in some fixed order (e.g., lexicographical order). All

derivatives which have the same canonical representation form an equivalence class. In

this way a partition is induced in the derivative set of a PEPA model. The corresponding

partition in its underlying Markov chain satisfies the lumpability condition, therefore

this aggregated CTMC may be used for performance evaluation instead of the (much

larger) original one.
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For instance, by assuming that the lexicographical order is such that P′ < P and

Q′ < Q, the NP ×NQ distinct states of (3.10) are members of the same equivalence

class, represented by their canonical representation P′ ‖ P[NP − 1] BC
{α1}

Q′ ‖ Q[NQ − 1].

In the aggregated CTMC, the initial state System1
def= P[NP] BC

{α1}
Q[NQ] will have a single

transition to this canonical state, with a rate which is the sum of all rates to each of

the members of the equivalence class, i.e. (3.11) as discussed above. The reduction

achieved by this algorithm depends on the structure of the model under study. Overall,

in Example 1, the exponential growth in the non-aggregated state space is simplified

to a state space cardinality polynomial in NP and NQ (the state space size is (NP +1)×
(NQ +1)). However, Markovian analysis may still be impractical when high population

levels or models with more complex structure are considered.

3.4 Deterministic Approximations

3.4.1 Fluid-Flow Approximation

A radical approach to tackling state-space explosion is to abandon the traditional Marko-

vian interpretation in favour of an alternative view in which the inherently discrete

changes of state are approximated in a continuous fashion. In the context of PEPA, the

seminal paper which prompted a considerable amount of research in this direction pro-

posed a deterministic interpretation in the form of a set of coupled ordinary differential

equations [93]. This approach is based on the observation that copies of isomorphic

sequential components composed in parallel can be regarded as being of the same type.

This is because they evolve through the same derivative set and the dynamic behaviour

of one copy is not affected by the state of the other isomorphic copies, but it only de-

pends upon the interactions with other components of different type. For instance, in

the composition P ‖ P′, P (resp., P′) enables (α1, p) (resp., (α2, p′)) regardless of the ac-

tivities enabled by P′ (resp., P). In Example 1 two component types may be identified,

respectively the left-hand side and the right-hand side of the non-empty cooperation

BC
{α1}

.

Based on this, it is possible to define an alternative state representation, called the

numerical vector form (NVF). The PEPA process describing the evolution of all com-

ponents of the same type has the generic form (assuming a suitable lexicographical

order for the canonical form) E1[K1] ‖ E2[K2] ‖ · · · ‖ EN [KN ], where E1,E2, . . .EN are the

local derivatives of the sequential component and K1,K2, . . .KN are the corresponding

number of copies exhibiting that derivative. Thus, the state may be completely charac-

terised by the vector (K1,K2, . . . ,KN), assuming an arbitrary but fixed mapping of local

derivatives onto coordinates of the vector. It is interesting to note that the length of
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the vector does not depend on the actual component counts, but only on the size of the

derivative set of the component type, which can be determined without recourse to the

derivation of the full state space of the system. The initial state of Example 1 (which is

P[NP] BC
{α1}

Q[NQ]) may be represented by:

(NP,0) BC
{α1}

(NQ,0) (3.12)

which states that there are NP copies of derivative P, no copies of P′, NQ copies of

derivative Q, and no copies of Q′. The NVF may be simplified further by observing that

the cooperation structure needs not be recorded if the model is specified according to

the two-level grammar (3.1). Models in such a form enjoy the property that they do

not spawn processes during the evolution of the system, e.g., processes of the form

(α,r).(E ‖ E) are not allowed. Additionally, the language has no primitives for the

dynamic configuration of hiding and cooperation sets. Thus, the number of sequential

components remains fixed across the entire state space and the behaviour is completely

determined by the local derivatives of each sequential component. This property, in

conjunction with the notion of component type discussed above, allows for a simpler

state descriptor. The description (3.12) can be reduced to the following NVF

(NP,0,NQ,0), (3.13)

with no loss of information provided that the static cooperation structure is recorded

separately. The adoption of the NVF brings about no significant advantages over the use

of the canonical form—apart from being a more parsimonious data structure for stor-

age, their underlying CTMCs are isomorphic. However, the purpose here is to replace

each discrete counter variable in the NVF with a continuous counterpart governed by

an ordinary differential equation. The procedure for achieving this is illustrated here

by means of Example 1.

The canonical state P′ ‖ P[NP − 1] BC
{α1}

Q′ ‖ Q[NQ − 1] may be represented as (NP −
1,1,NQ − 1,1) in the NVF, and this state is reached from (3.13) with the following

transition:

(NP,0,NQ,0)
α1,min(NP p,NQq)
−−−−−−−−−−→ (NP−1,1,NQ−1,1) (3.14)

This transition says that there is (on average) a unitary decrease in the number of

components P and Q after 1/min(NP p,NQq) time units. Notice that the transition rate is

a function of the current component counts. In general, by letting xE(t) be the variable

which counts the number of components exhibiting the derivative E at time t, it is

possible to write the decrease in the number of components over some finite interval

of time ∆t:

xP(t +∆t)− xP(t) =−min(xP(t)p,xQ(t)q)∆t (3.15)
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Analogously, the same decrement is observed for the variable xQ:

xQ(t +∆t)− xQ(t) =−min(xP(t)p,xQ(t)q)∆t (3.16)

Correspondingly, the population levels of P′ and Q′ are increased by the same quantity:

xP′(t +∆t)− xP′(t) = min(xP(t)p,xQ(t)q)∆t

xQ′(t +∆t)− xQ′(t) = min(xP(t)p,xQ(t)q)∆t
(3.17)

Dividing both sides of (3.15–3.17) by ∆t and taking the limit ∆t → 0 gives rise to a

contribution min(xP(t)p,xQ(t)q) to the following system of coupled ordinary differential

equations:

dxP(t)
dt

=−min(xP(t)p,xQ(t)q)+ . . .

dxQ(t)
dt

=−min(xP(t)p,xQ(t)q)+ . . .

dxP′(t)
dt

= min(xP(t)p,xQ(t)q)+ . . .

dxQ′(t)
dt

= min(xP(t)p,xQ(t)q)+ . . .

(3.18)

The ellipsis indicate that the ODE representation is only partial, because this system

only captures the relative changes of the population levels due to the execution of the

shared action α1. The contributions from the execution of the independent activities α2

and α3 can be extracted in a similar way. If there are xP′(t) (resp., xQ′(t)) components

of type P′ (resp., Q′) at time t, the population level is decreased by one at a rate which

is the product xP′(t)p′ (resp., xQ′(t)q′) and the component which makes the transition

will subsequently behave as P (resp., Q). Including these contributions in (3.18) will

give rise to the following system:

dxP(t)
dt

=−min(xP(t)p,xQ(t)q)+ xP′(t)p′

dxQ(t)
dt

=−min(xP(t)p,xQ(t)q)+ xQ′(t)q′

dxP′(t)
dt

= min(xP(t)p,xQ(t)q)− xP′(t)p′

dxQ′(t)
dt

= min(xP(t)p,xQ(t)q)− xQ′(t)q′

(3.19)

The procedure described in [93] can be used to automatically infer the differen-

tial model by static inspection of the model description. A set of coupled differential

equations is straightforwardly obtained via an intermediate object called the activity

diagram (or the equivalent representation termed the activity matrix), constructed to

collect the information about which action type influences which local derivative and

in which direction (i.e., whether the local derivative carries out the activity or if it is the



3.4. Deterministic Approximations 23

resulting derivative of some other sequential component performing the action). The

automatic procedure from [93] imposes five main restrictions to the syntactic structure

of models amenable to this analysis.3

Assumption 1. The hiding operator is not supported.

Assumption 2. Sequential components of distinct types must cooperate over all shared

action types.

For instance, given three distinct sequential components E, F, and G such that

E
def= (α,r).E′, F

def= (α,r).F′, and G
def= (α,r).G′, the model

(
E[NE] ‖ F[NF]

)
BC
{α}

G[NG], for

any NE,NF,NG ∈ N, cannot be analysed because the action type α is not in the cooper-

ation set between E[NE] and F[NF]. However, this pattern of cooperation is useful in

many circumstances. For instance, in a classical client/server scenario, E and F may

represent two distinct classes of clients (exhibiting perhaps different behaviour in their

other local states E′ and F′) which communicate with a group of servers G, where α

is the action which describes the interaction. Unfortunately this problem cannot be

circumvented by trivial changes to the model. For instance, a misleading fix could

consider two distinct action types αE and αF and modifying the process definitions as

follows: E
def= (αE,r).E′, F

def= (αF,r).F′, and G
def= (αE,r).G′ +(αF,r).G′. With the system

equation
(
E[NE] ‖ F[NF]

)
BC

{αE ,αF }
G[NG], this model still allows E and F to cooperate with

G independently of each other because G enables both action types αE and αF . In

addition, Assumption 2 is met because E and F do not share any action type. The

behaviour of the original system with respect to α would be recovered by considering

the aggregated behaviour of αE and αF in the new model. However, the agreement is

only qualitative—in particular, the initial state has two different overall exit rates, i.e.,

r min(NE +NF,NG) for action α in the original model and r
(

min(NE,NG)+min(NF,NG)
)

for actions αE and αF in the modified one.

Assumption 3. The same action type cannot be enabled by two distinct local states of the

same sequential component.

For instance, the model E[NE] BC
{α}

F[NF], with E
def= (α,r).E′,E′ def= (α,r).E,F

def= (α,r).F′

would not be accepted. A possible solution similar to that proposed above—consisting

in replacing the two α-actions in E and E′ with two distinct action types enabled simul-

taneously by F—would not agree quantitatively with the original model.

Assumption 4. Prefixes must have active rates.

3In fact, it may be applied to Example 1 only if p = q. In the light of further developments of the theory
discussed later in this section, the derivations presented here for p 6= q are still sensible.
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Assumption 5. Two synchronising components must have the same local view of the rate

of the shared activity.

As a consequence, a cooperation in the form (α,rE).E BC
{α}

(α,rF).F is not amenable

to fluid-flow approximation if rE 6= rF. Scenarios with asymmetric capacities occur

frequently in practical applications. For instance, with respect to the same client/server

model discussed above, the local rates for the shared activity may be associated with the

bandwidth available for the communication. At a suitable level of model abstraction, a

server’s local rate for α being higher than the client’s may capture the observation that

the server may be capable of carrying out the communication faster than the client, but

the minimum-rate semantics of PEPA will ensure that the delay is dominated by the

slowest of the participating components.

3.4.2 Differential Models for Computational Systems Biology

A similar translation procedure to [93] is given in [32] for a special class of PEPA

models considered for the analysis of signalling pathways. In such models, a sequen-

tial component represents a reactant in a biochemical network and it must be defined

with two states, describing the behaviour for high and low concentrations [31]. The

derivatives exhibited at high concentration indicate the chemical reactions in which

the reactant is consumed (thus transitioning to the state with low concentration). Con-

versely, the low-concentration state has derivatives corresponding to reactions in which

the reactant is produced (thus transitioning to the state with high concentration). In

either case, the chemical reactions are associated with the action types of the sequential

components’ derivatives. The final model consists of as many sequential components

as the distinct reactants in the network. The cooperation structure in the system equa-

tion is then used to define the reactions—if two components are the reagents of some

reaction, this is captured by a cooperation combinator whose action set includes the

shared action type for that reaction.

A deeply influential paper for the work developed in the present thesis is [72], in

which an extension to the cooperation combinator is used to accommodate the biolog-

ically interesting mass-action kinetics. Here, the nature of the relationship between the

differential equation model and the stochastic process is investigated for the first time,

and the authors show the the ODE may be regarded as the fluid limiting behaviour of

a sequence of increasingly detailed CTMCs. Informally, at the coarsest level of detail

is a representation in which the reactant’s concentration is represented by two discrete

states (called levels), as in the case of high and low concentration discussed above.

Finer granularity is given by increasing the number of levels; the (finite) concentration

interval of a species is divided into non-overlapping sub-intervals of equal length such
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that each level corresponds to one sub-interval. The authors prove that in the limit

as the number of levels goes to infinity the stochastic process is not distinguishable

from the ODE solution. This is an application of a general result of convergence due

to Kurtz [103], which will be also used in this thesis (therefore it will be discussed in

more detail in the next chapter).

It is worthwhile pointing out that in these works concerned with applications to

computational systems biology the syntactical restrictions presented in the previous

section are not removed because the so-reduced language is sufficiently expressive for

most practical purposes in this context. (In fact, in [32] a further restriction is imposed

by considering only two-state sequential components.) This remark also applies to [14]

in which the treatment of self-looping components, i.e., components in the form E
def=

(α,r).E, is modified to better capture the behaviour of epidemiological models.

3.4.3 Related Work

Diffusion Approximation of Queueing Networks

In queueing theory, the approach which most resembles the deterministic interpreta-

tion of PEPA is concerned with diffusion approximation. The discrete-state stochastic

process governing the queue length is approximated by a (continuous-state) Brown-

ian motion with drift. Although this process is still stochastic, the probability density

function is now analytically tractable since it has a closed form as the solution to the

Kolmogorov diffusion (partial differential) equation (also called the Fokker-Plank equa-

tion). This approximation is valid for generally distributed independent and identically

distributed service and interarrival times and is shown to match the discrete-state pro-

cess very well when such distributions are exponential. This approach, extended to

open and closed queueing networks, is used to study the transient and asymptotic

regimes [101,102]. Of particular importance are the boundary conditions to the diffu-

sion equation, which must be imposed to keep the approximation process in a meaning-

ful region (for instance, non-negative values of the queue size). This implies that such

approximations can be usefully applied under specific circumstances—termed heavy-

traffic assumptions—which impose saturation or near-saturation behaviour of the queue

(i.e., similar arrival and service rates) [74].

Fluid Approaches for Stochastic Petri Nets

A Fluid Stochastic Petri net is a formalism developed to incorporate continuously chang-

ing quantities in an ordinary Generalised Stochastic Petri Net [96]. The places of the net

are partitioned into discrete and fluid places. Discrete places are ordinary places marked



26 Chapter 3. PEPA

with non-negative natural numbers, while fluid places have a marking whose domain is

the non-negative reals, interpreted as a continuously changing fluid level. In addition to

ordinary arcs connecting discrete places, fluid places are connected to timed transitions

via continuous arcs. A flow rate function describes the (possibly marking-dependent)

rate at which the fluid flows from a timed transition to a fluid place. The analysis of

a Fluid Stochastic Petri nets is carried out by solving an associated fluid model. The

discrete part of the net has the usual interpretation of a Generalised Stochastic Petri

net, hence it is characterised by a CTMC. The dynamics of the fluid may be viewed as

a stochastic process modulated by the CTMC, and its behaviour is governed by a set

of partial differential equations, for which several transient and steady-state solution

methods have been devised [38,83,132] (cfr. [84] for a review of this field).

A more closely related approach is that of Continuous Petri Nets [7], in which all

places and transitions are fluid. The behaviour of the net, i.e., the temporal evolution

of the marking process, is deterministically governed by a set of coupled ordinary dif-

ferential equations. For a study on the relationship between this formalism and the

continuous interpretation of PEPA, the reader is referred to [69,70].

Differential Equations in Stochastic Process Algebras

The topic of deterministic interpretation of process algebra models has received much

attention recently. Cardelli has investigated the relationship between the continuous-

and the discrete-state representation of the Chemical Ground Form, a subset of the

stochastic π-calculus used for the modelling of chemical reactions obeying the mass-

action kinetics [33]. A route toward fluid-flow approximation similar to that of PEPA

has been followed in the context of the stochastic Concurrent Constraint Programming

process algebra. In [22] a mapping to ordinary differential equations is established;

in [21], these equations are shown to correspond to the first-order approximation of

the Chapman-Kolmogorov equations of the corresponding process and in [23] it is

shown that convergence in the sense of Kurtz holds. In the context of computational

systems biology, a similar relationship has been studied in [40] with regard to Bio-PEPA,

a process algebra based on PEPA explicitly developed for the modelling of biochemical

systems [41,42].

The opposite perspective is provided by the continuous π-calculus [107], a variant

of the π-calculus for the modelling of biochemical networks in which the operational

semantics is given directly in terms of a differential equation model (with an associated

CTMC which is suggested to follow directly from the semantics).
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Fluid Flow Semantics

This chapter develops a fluid-flow semantics for PEPA. This work follows the line of

research presented in Section 3.4, providing three main novel contributions:

1. The applicability of the fluid-flow approximation is extended by removing the

syntactical restrictions discussed in Section 3.4.1.

2. Unlike previous approaches, the semantics is not given directly in terms of an un-

derlying ODE. Instead, using the same structured operational style as the original

interpretation in [92], the semantics gives rise to a CTMC with state descriptor in

the NVF. For this reason it is called the population-based semantics. However, this

approach does not involve the exploration of the (potentially very large) state

space because the chain is only described symbolically by means of generating

functions, i.e., functions of the state descriptor which characterise the transitions

of any state of the chain.1 This compact representation is sufficient to construct

an associated ODE.

3. The relationship between the ODE which is defined in this way and the CTMC

derived from the population-based semantics is a profound one. For any PEPA

model, the ODE is shown to be the deterministic limiting behaviour of a suitably

defined sequence of population-based CTMCs. This asymptotic regime is of prac-

tical interest, as demonstrated by an extensive numerical investigation on a case

study.

The chapter is structured as follows. Section 4.1 sets up the framework within

which the population-based semantics is developed and gives an illustrative example

of the result of deterministic convergence used for the fluid interpretation. Section 4.2

presents the population-based semantics for PEPA, and its properties are proved in

1The term generating function used throughout this thesis is not to be confounded with the usual
definition of probability-generating function of a discrete random variable in probability theory.

27
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Section 4.3. Section 4.4 is concerned with an empirical study on the quality of the

approximation of the differential equation to the Markov process. Section 4.5 presents

concluding remarks about the nature of passive synchronisation in the fluid interpreta-

tion and the computation of theoretical error probabilities of the approximation.

4.1 Population Models for PEPA

Let ξ ∈ Zd be the state descriptor of a PEPA model in the NVF. The operational se-

mantics developed in this chapter leads to the derivation of generating functions of the

CTMC, i.e., functions of the state descriptor which give the transition rates between all

the reachable states of the system. These functions are parametrised by action types

to record the additional information of which action type is associated with a transi-

tion. Let l ∈ Zd be the transition jump, i.e., the transition moves from state ξ to ξ + l.

The generating functions are denoted by ϕα(ξ, l) : Rd → R and give the transition rate

for a jump l and an activity of type α ∈ A . Thus, the entry in the generator matrix

corresponding to the transition from ξ to ξ+ l, denoted by qξ,ξ+l, can be written as

qξ,ξ+l = ∑
α∈A

ϕα(ξ, l).

The summation across A captures the fact that distinct action types may contribute to

a transition to the same target state, e.g., (α,r).E +(β,s).E. These transitions are kept

distinct in the labelled transition system of PEPA, because it records the action type in

addition to the transition rate, but they collapse onto the same entry in the underlying

generator matrix. We use the notation

ϕ(ξ, l)≡ ∑
α∈A

ϕα(ξ, l)

to indicate the overall contribution to the transition. The extraction of the generat-

ing functions from the PEPA model usually presents very little computational challenge

because the environment collected via the inference rules in the population-based op-

erational semantics abstracts away from the actual component counts of the system

under study. From ϕ(ξ, l) it is possible to construct a vector field V (x) defined as

V (x) = ∑
l∈Zd

lϕ(x, l) (4.1)

and an associated ODE
dx(t)

dt
= V (x(t)). (4.2)

This formulation makes it possible to establish a property of convergence for PEPA

models according to the interpretation by Kurtz [103], [104], [105]. The result used
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P
def= (α1, p).P′

P′
def= (α2, p′).P

Q
def= (α1,q).Q′

Q′ def= (α3,q′).Q

System1
def= P[NP] BC

{α1}
Q[NQ]

Figure 4.1: Example 1 (from Section 3.2)

here states that the solution to a properly defined initial value problem with (4.2) is the

fluid limiting behaviour of a family of CTMCs in the sense of the following theorem.

Theorem 1 (cfr. [103], Theorem 3.1). Let {Xn(t)} be a family of density dependent

CTMCs, i.e., a sequence of chains with parameter n ∈ N taking values in Zd such that the

infinitesimal generator entries for Xn(t), denoted by qξ,ξ+l, can be described as

qξ,ξ+l = n ·ϕ(ξ/n, l). (4.3)

Suppose that:

1. The functions ϕ(x, l) are continuous.

2. There exists an open set O⊂ Rd and a constant L ∈ R such that:

(a) ‖V (x)−V (y)‖< L‖x− y‖ , x,y ∈ O

(b) supx∈O ∑l∈Zd ‖l‖ϕ(x, l) < ∞

(c) limk→∞ supx∈O ∑‖l‖>k ‖l‖ϕ(x, l) = 0

Then, for every solution to the initial value problem of (4.2) subject to

x(0) = x0 and x(t) ∈ O, 0≤ t ≤ T

the family {Xn(t)} converges to x(t) in the sense that

lim
n→∞

Xn(0)/n = x0 =⇒∀ε > 0 lim
n→∞

P
(

sup
t≤T

‖Xn(t)/n− x(t)‖> ε

)
= 0. (4.4)

Let us now use Example 1 (reported again in Fig. 4.1 for the sake of convenience)

to illustrate the rationale behind the approach and give an intuitive interpretation of

the result of convergence. The generating functions are obtained by reducing System1

to a much smaller model component red (System1) (where the function red(·) will be

formally introduced in the next section). This component extracts the structure of
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the system by disregarding the information about the multiplicities of the replicated

components:

red (System1)
def= P BC

{α1}
Q

The sequential components P and Q in this equation are not interpreted as single

entities, but as representatives of classes of behaviour. The state descriptor in the

NVF is formed by computing the local derivatives of each sequential component in

red(System1)—this procedure is of negligible computational cost because the behaviour

of such components is usually simple, and the state space growth arises from the inter-

leaving of their concurrent behaviours. A NVF with the same component mapping as

in Section 3.3 may be used—i.e., ξ ∈ Z4 and ξ1,ξ2,ξ3,ξ4 are the component counts of

the local derivatives P,P′,Q,Q′, respectively.

The population-based semantics will generate a derivation graph for red (System1),

and a transition in this derivation graph gives information about a generating function

of the CTMC. For instance, the following generating function is obtained for α1:

ϕα1 (ξ,(−1,1,−1,1)) = min(pξ1,qξ3) (4.5)

which intuitively means: if there are ξ1 components P and ξ3 components Q, each being

able to perform the shared action α1 at rate p and q, respectively, then the overall rate

of execution for the activity is the minimum (by the cooperation rule) of the two rates at

which the action can be performed by the populations of the synchronising components

(by additivity of apparent rate calculation). Let ξ̂ = (NP,0,NQ,0) (i.e., the initial state

of Example 1), then (4.5) implies the CTMC transition

ξ̂ = (NP,0,NQ,0)
(α1,min(NP p,NQq))
−−−−−−−−−−−→ ξ̂+(−1,1,−1,1) = (NP−1,1,NQ−1,1) (4.6)

Other transitions of the derivation graph will represent the behaviour of the sequential

components in state P′ and Q′, leading to the following generating functions, respec-

tively

ϕα2 (ξ,(1,−1,0,0)) = p′ξ2 (4.7)

and

ϕα3 (ξ,(0,0,1,−1)) = q′ξ4. (4.8)

The non-zero elements of the jump vector indicate which component derivatives are

involved in the transition. With regard to the shared action α1, all sequential compo-

nents are subjected to change in their population levels, because of the transitions of

the single components (3.4) and (3.5) which record a decrease of P and Q and a cor-

responding increase of P′ and Q′. Finally, (4.5), (4.7) and (4.8) can be used to extract
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the underlying ODE (4.2), which is, in components:

dx1(t)
dt = −min(px1(t),qx3(t))+ p′x2(t)

dx2(t)
dt = min(px1(t),qx3(t))− p′x2(t)

dx3(t)
dt = −min(px1(t),qx3(t))+q′x4(t)

dx4(t)
dt = min(px1(t),qx3(t))−q′x4(t)

(4.9)

Notice that this differential equation is equal to (3.19), obtained with arguments

of deterministic approximation of exponentially distributed activities with their means.

A family of population-based CTMCs {Xn(t)} can be systematically associated with a

PEPA model by taking a density vector, denoted by δ ∈ Zd , which is interpreted as

giving the relative proportions between the distinct sequential components. By letting

δ = (NP,0,NQ,0), the sequence of CTMCs is such that the initial population levels are

multiples of δ, i.e.,

Xn(0) = n ·δ, for all n.

This corresponds to increasingly large initial population levels as a function of n. For

instance, X1(t) represents the original population-based CTMC, X2(t) is the CTMC un-

derlying the model with initial state P[2NP] BC
{α1}

Q[2NQ], and so on. Since by construction

limn→∞ Xn(0)/n = δ, the result of convergence (4.4) intuitively states that, asymptoti-

cally, a sample path of the CTMC Xn(t) may be well approximated by n · x(t), over any

finite time interval, where x(t) is the solution to the initial value problem of the ODE

(4.9) with x(0) = δ. A pictorial representation of this result is given in Fig. 4.2, which

shows that the ODE is a closer approximation to sample paths of Xn(t)/n for increasingly

large n, with excellent accuracy at n = 1000.

4.2 Population-Based Operational Semantics

Models are specified according to the two-level grammar (3.1). The present operational

semantics does not deal directly with passive rates, thus Assumption 4 of Section 3.4

still holds. However, a discussion on extensions to incorporate passive synchronisa-

tion is proposed in Section 4.5.1, after the semantics is presented. None of the other

assumptions of Section 3.4 are required.

4.2.1 Preliminary Definitions

As discussed above, the interpretation of a PEPA model against the population-based

structured operational semantics begins with considering a system equation which does

not record the multiplicities of independent replicated sequential components. Any
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Figure 4.2: Density of component P in Example 1. One realisation of the scaled Markov chain

Xn(t)/n over the first three time units becomes closer to the solution of the ODE as n increases.

Parameter set: p = 1.0, p′ = 0.5,q = 2.0,q′ = 4.0,δ = (2,0,1,0)

PEPA component may be compacted in such a way. Here isomorphism is used to estab-

lish whether two distinct sequential components are equivalent.

Definition 2 (Reduced Context). The reduced context of a PEPA component E, denoted

by red(E), is recursively defined as follows:

red ((α,r) .E) = (α,r) .E

red (E +F) = E +F

red(A) = red(E), if A def= E

red(E BC
L

F) =

{
red(E) if L = /0∧E = F∧E,F are sequential components

red(E) BC
L

red(F) otherwise

red(E/L) = red(E)/L

The reduced context considers one representative single sequential component E

in place of the cooperation E ‖ F if the two cooperating processes are isomorphic se-

quential components. Thus, because of this equivalence relation between these compo-

nents, the first case for the cooperation operator in Definition 2 could also read red(F).

Clearly, the two arrays P[NP] and Q[NQ] in Example 1 are recursively reduced to single

sequential components P and Q, respectively and

red(System1) = P BC
{α1}

Q, (4.10)

as illustrated above. Notice that the same context reduction (4.10) would be obtained

if the system equation was replaced with(
P[NP−KP]‖P′[KP]

)
BC
{α1}

(
Q[NQ−KQ]‖Q′[KQ]

)
, (4.11)
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for any 1 ≤ KP ≤ NP and 1 ≤ KQ ≤ NQ. Here the (NP −KP) P components would be

reduced to P as before. Furthermore, the cooperation P ‖ P′ would be reduced to P

as well, since P and P′ are isomorphic because they are two local derivatives of the

same sequential component. Similar arguments hold for the isomorphism between Q

and Q′. Therefore, the two model equations will give rise to the same underlying ODE

although with two different initial value problems, as determined by the population

levels specified in the equations.

It is worthwhile pointing out that Definition 2 also allows for two or more instances

of a sequential component to appear in the reduced context of a PEPA model. For

example, we have that

red
((

P[NP] BC
{α1}

Q[NQ]
)
‖ P[N′

P]
)

=
(
P BC

{α1}
Q

)
‖ P

This supports the intuitive observation that the leftmost array of P components will be-

have differently from the rightmost array. In this instance, the action α1 of the leftmost

array is executed in cooperation with a Q component, whereas it is an independent

action with regard to the rightmost array because of the empty cooperation set.

In the remainder we consider a PEPA model for which the context reduced form M
is already known. This minimal form contains the necessary information to determine

the state descriptor in NVF, and is analogous to a Petri net without any marking.

Definition 3 (Numerical Vector Form). Let NC be the number of distinct sequential com-

ponents in M . Let Ci be the derivative set of the i-th component, i = 1,2, . . . ,NC and let

Ni be its size, i.e., Ni = |Ci|. Let Ci, j denote the j-th derivative of the i-th component,

j = 1,2, . . . ,Ni. The state descriptor in the NVF, denoted by ξ ∈ Zd ,d = ∑
NC
i=1 Ni, assigns a

coordinate, denoted by ξi, j, to each local derivative Ci, j and indicates the number of copies

in the system which exhibit that derivative.

Definition 4 (Initial State of the CTMC). The initial state of the CTMC is denoted by

δ ∈ Zd and gives an initial population level δi, j ≥ 0 to each local derivative Ci, j. Without

loss of generality we exclude the case in which all the derivatives of a sequential component

are set to 0, by subjecting δ to the condition ∑
Ni
k=1 δi,k > 0, for all i.

Sometimes the element ξi, j is conveniently referred to by a single subscript ξk, i.e.,

an implicit mapping is assumed from each sequential component Ci, j to a coordinate

1 ≤ k ≤ d in the population vector. For instance, with regard to Example 1, NC = 2,

C1 = {P,P′}, and C2 = {Q,Q′}. Furthermore, the following mappings are used: C1,1 7→P,

C1,2 7→P′, C2,1 7→Q, C2,2 7→Q′. Using the same ordering as in Section 4.1, the initial state

in Example 1 is (NP,0,NQ,0) whereas it is (NP−KP,KP,NQ−KQ,KQ) in (4.11). When a

superscript is used, it refers to a state of the CTMC. Thus, ξm
i, j indicates the population

count of the sequential component Ci, j in the m-th state of the CTMC.
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As with the Markovian interpretation, at the core of this semantics is the notion of

apparent rate. Here this concept is modified to take into account the interpretation of

the reduced context described above.

Definition 5 (Parametric Apparent Rate). Consider a process E composed of sequential

components Ci, j. The parametric apparent rate of action type α in component E, denoted

by r?
α (E,ξ), defines the overall rate at which the action type α can be performed by com-

ponent E as a function of the current population sizes ξ of the sequential components of

the system:

r?
α

(
E BC

L
F,ξ

)
=

{
min(r?

α (E,ξ) ,r?
α (F,ξ)) if α ∈ L

r?
α (E,ξ)+ r?

α (F,ξ) if α 6∈ L

r?
α (E/L,ξ) =

{
r?

α (E,ξ) if α 6∈ L

0 if α ∈ L

r?
α (Ci, j,ξ) =

Ni

∑
k=1

rα(Ci,k)ξi,k

The first two cases are structurally and syntactically similar to their counterparts

in the Markovian semantics, rα(E BC
L

F) and rα(E/L). For a sequential component of

the reduced context, the definition of parametric apparent rate exploits the property in

(3.3) that it can be expressed as the product of the current population size expressed

in the state descriptor and the apparent rate of a single sequential component. In ad-

dition, the behaviour of the other derivatives in the same derivative set of Ci, j is taken

into account because of the interpretation of M . As already discussed, each sequen-

tial component in M represents an array of identical components, evolving through

the local derivatives Ci,k, 1 ≤ k ≤ Ni. In any state of the CTMC there may be one or

more components exhibiting each such derivative. These components will compete to

participate in a shared action α, and the probability that the action is completed by

each derivative will be proportional to the population level of that derivative and the

individual rate of execution. Thus, the apparent rate calculated in this manner reflects

the potential contribution to the action by any concurrent sequential component. This

summation is legitimate due to the property of additivity which holds for the apparent

rates for non-cooperating components.

The set of functions generated by r?
α (·,ξ) is denoted by F = [Rd −→R≥0], a function

space with values in the nonnegative reals because passive actions are not allowed.
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Sequential Component (Promotion Rule)

S?
0 :

Ci,j
(α,r)−−→ Ci,j′ Ci, j ∈ Ci

Ci,j
(α,rξi, j)−−−−→? Ci,j′

Cooperation

C?
0 :

E
(α,r(ξ))−−−−→? E′

E BC
L

F
(α,r(ξ))−−−−→? E′ BC

L
F

, α 6∈ L

C?
1 :

F
(α,r(ξ))−−−−→? F′

E BC
L

F
(α,r(ξ))−−−−→? E BC

L
F′

, α 6∈ L

C?
2 :

E
(α,r1(ξ))−−−−−→? E′ F

(α,r2(ξ))−−−−−→? F′

E BC
L

F
(α,r(ξ))−−−−→? E′ BC

L
F′

, α ∈ L,

r(ξ) =
r1(ξ)

r?
α (E,ξ)

r2(ξ)
r?

α (F,ξ)
min(r?

α (E,ξ) ,r?
α (F,ξ))

Hiding

H?
0 :

E
(α,r(ξ))−−−−→? E′

E/L
(α,r(ξ))−−−−→? E′/L

, α 6∈ L

H?
1 :

E
(α,r(ξ))−−−−→? E′

E/L
(τ,r(ξ))−−−−→? E′/L

, α ∈ L

Constant

A?
0 :

E
(α,r(ξ))−−−−→? E′

A
(α,r(ξ))−−−−→? E′

, A
def= E

Figure 4.3: Population-based parametric structured operational semantics of PEPA. Transitions

are denoted by the symbol −→? to distinguish them from the Markovian transitions in PEPA

which carry reals instead of functions.
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4.2.2 Structured Operational Semantics

The population-based parametric structured operational semantics for PEPA is shown

in Fig. 4.3. Let C be the set of PEPA processes composed of Ci, j. Let L be the la-

belling alphabet, i.e., L = A×F . The rules induce a parametric multi-transition system,

(C ,L ,−→?) ,−→?⊆ C ×L ×C , which records the multiplicity of a transition between two

components. As with the Markovian semantics of PEPA, this requirement is necessary

in order to calculate the transition rates correctly.

The rule for sequential components S?
0 constructs the relationship between the two

semantics. The premise is a transition of the Markovian semantics for a single sequen-

tial component. By construction of C the right hand side of the transition is in the same

derivative set, i.e., Ci,j
(α,r)−−→ Ci′,j′ ⇒ i = i′. Such a transition is said to be promoted to an

inference for the population-based semantics—the premise describes the behaviour of

a single sequential component, whereas the conclusion gives the collective dynamics of

the population of components Ci,j. This population evolves at an overall rate which is

the product of the individual rate and the number of components exhibiting this local

derivative.

The other rules are syntactically similar to their counterparts in the Markovian se-

mantics. However, in all cases the derivations carry as rates functions of F instead

of reals. The following derivation tree gives a transition for the shared activity with

regard to the reduced context of Example 1.

P
(α1,p)−−−→ P′

P
(α1,pξ1,1)
−−−−−−→? P′

S?
0

Q
(α1,q)−−−→ Q′

Q
(α1,qξ2,1)
−−−−−→? Q′

S?
0

P BC
{α1}

Q
(α1,min(pξ1,1,qξ2,1))−−−−−−−−−−−−−→? P′ BC

{α1}
Q′

C?
2 (4.12)

The following two examples present cases which could not be handled by the de-

terministic interpretation introduced in [93]. The rules for cooperation can be used to

derive the rate for shared actions which can be performed by two distinct local deriva-

tives of the same sequential component (cfr. Assumption 3, Section 3.4), as shown by

P in the following.

Example 2 (Distinct local states enabling the same activity type).

ξ1,1 P def= (α1, p).P′

ξ1,2 P′ def= (α2, p′).P′′

ξ1,3 P′′ def= (α1, p′′).P

ξ2,1 Q def= (α1,q).Q′

ξ2,2 Q′ def= (α3,q′).Q

System2
def= P[NP] BC

{α1}
Q[NQ]
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(Alongside the process definitions are the corresponding coordinates in the population

vector.) The local derivatives P and P′′ perform the shared action at parametric rate ξ1,1 p

and ξ1,3 p′′, respectively. Similarly, the parametric rate for Q is ξ2,1q. Rule C?
2 says that each

local state evolves at a rate which is weighted by their relative probabilities of execution,

i.e., ξ1,1 p/(pξ1,1 + p′′ξ1,3) and p′′ξ1,3/(pξ1,1 + p′′ξ1,3).

Rules C?
0 and C?

1 allow two distinct sequential components not to cooperate over the

set of shared action types (cfr. Assumption 2), as illustrated by the following example.

Example 3 (Implicit Choice).

ξ1,1 P def= (α1, p).P′

ξ1,2 P′ def= (α2, p′).P

ξ2,1 R def= (α1,r).R′

ξ2,2 R′ def= (α4,r′).R

ξ3,1 Q def= (α1,q).Q′

ξ3,2 Q′ def= (α3,q′).Q

System3
def=

(
P[NP] ‖ R[NR]

)
BC
{α1}

Q[NQ]

Components P and R may both perform an activity of type α1, although the system

equation does not enforce synchronisation between them because their cooperation set

is empty. In our semantics, two deduction trees for α1 can be inferred which represent

the interactions between components P and Q, and R and Q. The deduction tree for

the interaction between P and Q is:

P
(α1,p)
−−−→ P′

P
(α1,pξ1,1)−−−−−−→? P′

S?
0

P ‖ R
(α1,pξ1,1)−−−−−−→? P′ ‖ R

C?
0

Q
(α1,q)
−−−→ Q′

Q
(α1,qξ3,1)−−−−−→? Q′

S?
0

(P ‖ R) BC
{α1}

Q
(α1, f1(ξ))
−−−−−−→? (P′ ‖ R) BC

{α1}
Q′

C?
2,

where

f1(ξ) =
pξ1,1

r?
α1

(P‖R,ξ)
qξ3,1

r?
α1

(Q,ξ)
min

(
r?

α1
(P‖R,ξ) ,r?

α1
(Q,ξ)

)
=

pξ1,1

pξ1,1 + rξ2,1
min(pξ1,1 + rξ2,1,qξ3,1)

The deduction tree for the transition

(P ‖ R) BC
{α1}

Q
(α1, f2(ξ))−−−−−→?

(
P ‖ R′

)
BC
{α1}

Q′

can be similarly inferred in the obvious way, where

f2(ξ) =
pξ2,1

pξ1,1 + rξ2,1
min(pξ1,1 + rξ2,1,qξ3,1)

Notice that f1(ξ) + f2(ξ) = min(pξ1,1 + rξ2,1,qξ3,1), which represents the total activity

rate for α1.
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4.2.3 Parametric Derivation Graph

All the inference trees presented in the previous section are concerned with the deriva-

tion of transitions from the initial state M . However, this information is not sufficient to

obtain the behaviour of the entire system under consideration, because the derivatives

of the initial state under the Markovian semantics only give the first-step behaviour of

the process. The collective behaviour of the system is represented by the notions of

derivative set and derivation graph of M in the population-based semantics, which are

defined in a similar way to their counterparts in the Markovian semantics.

Definition 6 (Parametric Derivative Set). The parametric derivative set of M , denoted

by ds?(M ), is the smallest set of PEPA components which satisfies the following conditions:

• M ∈ ds?(M )

• If E ∈ ds?(M ) and there exists E
(α,r(ξ))−−−−→? E′ then E′ ∈ ds?(M )

Notice that the indicator function can be applied to each E ∈ ds?(M ) because it is

a composition through the combinators of PEPA of sequential components Ci, j, each of

which has the coordinate (i, j) in the NVF by Definition 3. We use the following notion

of indicator function to obtain the local states exhibited by a derivative in ds?(M ).

Definition 7 (Indicator Function). Let 1i, j ∈ Zd denote a vector whose elements are all

zero except for the coordinate corresponding to the derivative Ci, j, which is set to one.

Let E ∈ ds?(M ). The indicator of E, denoted by ind(E), returns a vector whose non-zero

elements correspond to the indices in the population vector of the sequential components

in E. It is defined as follows:

ind(Ci, j) = 1i, j

ind(A) = ind(E), if A def= E

ind(E BC
L

F) = ind(E)+ ind(F)

ind(E/L) = ind(E)

In the third definition, the operator + denotes the usual summation of vectors and

is not to be confused with the choice operator of PEPA. In Example 1 we have that

ind(P BC
{α1}

Q) = (1,0,1,0).

The derivative set ds?(M ) is of crucial importance for the development of the

population-based semantics. Each derivative E ∈ ds?(M ) identifies a specific kind of

behaviour, i.e., the interactions amongst the sequential components when they exhibit

the local states indicated by ind(E). For instance, in Example 1 the semantics will give

transitions for the generic state(
P[ξ1,1] ‖ P′[ξ1,2]

)
BC
{α1}

(
Q[ξ2,1] ‖ Q′[ξ2,2]

)
(4.13)
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although the component P BC
{α1}

Q subsumes information only about the transitions be-

tween the ξ1,1 components in state P and the ξ2,1 components in state Q. As observed

above (cfr. (3.9)), the transition between each such pair of sequential components can

be expressed parametrically as a function of their population levels and the behaviour

of the individual sequential components involved. The other kinds of behaviour which

are simultaneously enabled by (4.13) are obtained by the other elements of ds?(M ).

In Example 1, the inference tree in (4.12) implies P′ BC
{α1}

Q′ ∈ ds?(M ). The transitions

from this component are concerned with the interactions between the ξ1,2 components

exhibiting state P′ and the ξ2,2 components in state Q′. These can be obtained from the

following two inference trees:

P′
(α2,p′)−−−−→ P

P′
(α2,p′ξ1,2)−−−−−−→? P

P′ BC
{α1}

Q′ (α2,p′ξ1,2)−−−−−−→? P BC
{α1}

Q′
(4.14)

Q′ (α3,q′)−−−−→ Q

Q′ (α3,q′ξ2,2)−−−−−−→? Q

P′ BC
{α1}

Q′ (α3,q′ξ2,2)−−−−−−→? P′ BC
{α1}

Q
(4.15)

The construction of the parametric derivative set is completed by the inference of the

transitions for P BC
{α1}

Q′ and P′ BC
{α1}

Q:

Q′ (α3,q′)−−−−→ Q

Q′ (α3,q′ξ2,2)−−−−−−→? Q

P BC
{α1}

Q′ (α3,q′ξ2,2)−−−−−−→? P BC
{α1}

Q
(4.16)

P′
(α2,p′)−−−−→ P

P′
(α2,p′ξ1,2)−−−−−−→? P

P′ BC
{α1}

Q
(α2,p′ξ1,2)−−−−−−→? P BC

{α1}
Q

(4.17)

Finally, the notion of parametric derivation graph encompasses the complete behaviour

of the system.

Definition 8 (Parametric Derivation Graph). Given a parametric derivative set ds?(M ),

the parametric derivation graph of M , denoted by D?(M ) is a labelled directed multi-

graph (V,A) with vertices V ∈ ds?(M ) and arcs A ∈ ds?(M )×L×ds?(M ) where the num-

ber of occurrences of an arc, denoted by m, is equal to the number of distinct inference trees

for a transition.

The inference trees (4.12), (4.14), (4.15), (4.16), and (4.17) give rise to the para-

metric derivation graph depicted in Fig. 4.4 (each arc has multiplicity one).
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P !"
{α1}

Q ′

P !"
{α1}

Q P ′ !"
{α1}

Q ′

P ′ !"
{α1}

Q
α2, p′ξ1,2

α3, q′ξ2,2

α1,min (pξ1,1, qξ2,1)

α2, p′ξ1,2

α3, q′ξ2,2

Figure 1: Test

1Title: State machine :Tags: Manual, Automata, Graphs
Another examle from the manual.
— Author: Till Tantau — Source: The PGF/TikZ manual

1[:]

1

Figure 4.4: Parametric derivation graph of Example 1

4.2.4 Extraction of the Generating Functions

The arcs of the parametric derivation graph can be used to construct the generating

functions of the underlying population-based CTMC, as straightforwardly as the deriva-

tion graph in the original semantics gives rise to the underlying Markov process. An arc

E
(α,r(ξ))−−−−→? E′ ∈ A implies a generating function in the form ϕα(ξ, l) = m · r(ξ), where m

is the multiplicity of the arc and the jump vector l indicates the sequential components

whose population levels change due to the transition. The jump vector is taken from

the inspection of the source and target components of the transition. The population

levels of sequential components in the source component are subjected to a decrease

by one. Correspondingly, the population levels in the target component are increased

by the same quantity. This is captured by the following definition.

Definition 9 (Extraction of the Generating Functions). Let M be a PEPA model with

parametric derivative graph D?(M ). The generating functions of the underlying population-

based CTMC are as follows:

ϕα(ξ, l) =

 m · r(ξ) if ∃ E
(α,r(ξ))−−−−→? E′ ∈ A and l = 0d − ind(E)+ ind(E ′)

0 otherwise

where 0d is the zero-vector in Zd .

It is possible to verify that the generating functions derived according to this def-

inition coincide with those formulated in (4.5–4.8) for Example 1. Notice that two

distinct transitions in the parametric derivation graph may give rise to the same gen-

erating functions. For instance, (4.14) and (4.17) imply the generating function (4.7).
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However, both transitions express the same kind of behaviour, i.e., the possibility for

components of kind P′ to perform action α2, regardless of the states of the components

in the right hand side of the cooperation. As discussed in Section 4.1 the fact that the

components exhibiting states Q and Q′ are not involved in this transition is reflected

by their corresponding elements in the jump vector being equal to zero. This property

emerges from the calculation of the jump vector in Definition 9, as any sequential com-

ponent which is present in both sides of a transition is such that the negative entry −1

(due to the presence in the lhs) cancels out the positive entry +1 (due to the presence

in the rhs) in the component’s corresponding coordinate. (A similar remark can be

applied to the symmetric case of (4.15) and (4.16), which define the same function

(4.8).)

4.3 Fluid Limit of the CTMC

This section is concerned with verifying that the population-based semantics satisfies

the conditions of Theorem 1.

4.3.1 Density Dependency

In order to prove (4.3) we begin by proving the following property for parametric

apparent rates.

Lemma 1. Let r?
α (E,ξ) be the parametric apparent rate of action type α in process E. For

any n ∈ N and α ∈ A ,

r?
α (E,ξ) = n · r?

α (E,ξ/n)

Proof. We proceed by structural induction over Definition 5. For the base case, we have

that

r?
α (Ci, j,ξ) =

Ni

∑
k=1

rα(Ci,k)ξi,k = n
Ni

∑
k=1

rα(Ci,k)ξi,k/n = n · r?
α (E,ξ/n)

The inductive step follows by observing that density dependency is preserved by the

functions min and summation.

This lemma is used to prove that the same property is enjoyed by the parametric

rates which label the transitions in the population-based semantics.

Lemma 2. If E
(α,r(ξ))−−−−→? E′ then, for any n ∈ N, r(ξ) = n · r(ξ/n)

Proof. We prove this by structural induction over the structured operational semantics

in Fig. 4.3. The base case S?
0 is obvious. The less straightforward case is that of rule C?

2
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where the rate function does not carry over to the conclusion. Combining the induction

hypothesis on r1(ξ) and r2(ξ) and the previous lemma for r?
α (E,ξ) and r?

α (F,ξ),

r(ξ) =
r1(ξ)

r?
α (E,ξ)

r2(ξ)
r?

α (F,ξ)
min(r?

α (E,ξ) ,r?
α (F,ξ))

=
n · r1(ξ/n)

n · r?
α (E,ξ/n)

n · r2(ξ/n)
n · r?

α (F,ξ/n)
min(n · r?

α (E,ξ/n) ,n · r?
α (F,ξ/n))

=
r1(ξ/n)

r?
α (E,ξ/n)

r2(ξ/n)
r?

α (F,ξ/n)
n ·min(r?

α (E,ξ/n) ,r?
α (F,ξ/n)) = n · r(ξ/n)

Observing that ϕ(x, l) is a summation of functions which satisfy the previous lemma,

the following proposition holds.

Proposition 1. Let M be a PEPA model with generating functions ϕ(x, l) derived according

to Definition 9. The elements of the generator matrix are such that they verify (4.3).

4.3.2 Lipschitz Continuity

Observing that Lipschitz continuity is preserved by summation, in order to verify that

the vector field (4.1) is Lipschitz it suffices to prove that any parametric rate generated

by the semantics is Lipschitz. As with density dependence, we check that the property

holds for apparent rates.

Lemma 3. Let r?
α (E,ξ) be the parametric apparent rate of action type α in process E.

There exists a constant L ∈ R such that for all x,y ∈ Rd ,x 6= y,

‖r?
α (E,x)− r?

α (E,y)‖
‖x− y‖

≤ L

Proof. This is proven by using the supremum norm ‖x‖= maxi |xi| and structural induc-

tion over the Definition 5.

Base case

∥∥r?
α (Ci, j,x)− r?

α (Ci, j,y)
∥∥ =

∥∥∥∥∥ Ni

∑
k=1

rα(Ci,k)(xi,k− yi,k)

∥∥∥∥∥≤ Ni

∑
k=1

rα(Ci,k)‖x− y‖

Inductive Step

Case r?
α

(
E BC

L
F, ·

)
= min(r?

α (E, ·) ,r?
α (F, ·)), α ∈ L follows because the minimum of two

Lipschitz functions (by the induction hypothesis) is also Lipschitz.

Case r?
α

(
E BC

L
F, ·

)
= r?

α (E, ·)+r?
α (F, ·) ,α 6∈ L. This is Lipschitz with constant L = LE +LF ,

where LE and LF are the Lipschitz constants of E and F, respectively, which exist by the

induction hypothesis.

Case r?
α (E/L, ·). The function 0 is Lipschitz. The other case follows by the induction

hypothesis.
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Lemma 4. If E
(α,r(x))−−−−→? E′ then r(x)≤ r?

α (E,x)

Proof. We prove this by structural induction. The most interesting case is that of coop-

eration.

Rule C?
0 (Rule C?

1 is symmetric)

r(x) = r1 ≤ r?
α (E,x)≤ r?

α (E,x)+ r?
α (F,x)≡ r?

α

(
E BC

L
F,x

)

Rule C?
2

r(x) =
r1(x)

r?
α (E,x)

r2(x)
r?

α (F,x)
min(r?

α (E,x) ,r?
α (F,x))

≤ 1 ·1 ·min(r?
α (E,x) ,r?

α (F,x))≡ r?
α

(
E BC

L
F,x

)

By combining Lemma 3 and 4, by structural induction over the semantic rules,

Proposition 2. If E
(α,r(x))−−−−→? E′ then r(x) is Lipschitz continuous.

Proposition 3 (Boundedness of the ODE solution). Let x(t),0 ≤ t ≤ T satisfy the initial

value problem dx
dt = V (x(t)),x(0) = δ, specified from a PEPA model according to (4.1) and

Definition 4. Then, for all t, ∑
Ni
j=1 xi, j(t) = ∑

Ni
j=1 δi, j, for any 1≤ i≤ NC.

Proof. Consider the construction of the vector field V (x) and observe that initially

V (x) = 0 implies that

Ni

∑
j=1

dxi, j(t)
dt

= 0, for any 1≤ i≤ NC. (4.18)

By Definition 9, a generating function ϕα(ξ, l) is implied by a transition E
(α,r(ξ))−−−−→? E′.

Because of the two-level grammar, both E and E′ have the same compositional structure

as the initial state M . Therefore, let C1, j1 ,C2, j2 , . . . ,CNC, jNC
be the local states of the se-

quential components of E and C1,k1 ,C2,k2 , . . . ,CNC,kNC
be the local states of the sequential

components of E′. For any 1≤ i≤ NC there are two cases. If ji = ki then the elements of

the jump vector l corresponding to the i-th sequential component are zero, thus (4.18)

holds. If ji 6= ki then −ϕα(ξ, l) is added to the component of the vector field (i, ji) and

+ϕα(ξ, l) is added to the component (i,ki), and (4.18) still holds. By Proposition 2 and

Cauchy-Lipschitz theorem, the solution to the initial value problem is unique. This so-

lution must satisfy (4.18) which implies ∑
Ni
j=1 xi, j(t) = Ki for all t and some constant Ki,

1≤ i≤ NC. From the initial condition, ∑
Ni
j=1 xi, j(0) = ∑

Ni
j=1 δi, j ≡ Ki, as required.
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Theorem 2. Let x(t),0 ≤ t ≤ T satisfy the initial value problem dx
dt = V (x(t)),x(0) = δ,

specified from a PEPA model according to (4.1) and Definition 4. Let {Xn(t)} be a family

of CTMCs with parameter n ∈ N generated according to Definition 9 and let Xn(0) = n ·δ.

Then,

∀ε > 0 lim
n→∞

P
(

sup
t≤T

‖Xn(t)/n− x(t)‖> ε

)
= 0.

Proof. The proof is based on checking that the conditions of Theorem 1 are satisfied

by any PEPA model. Proposition 2 establishes that the parametric rates are globally

Lipschitz in Rd . Thus, in Theorem 1, Condition (1) is satisfied and (2a) holds for any

open O ⊂ Rd . By Proposition 3 the trajectory of the ODE solution is bounded hence

the set O may be chosen to be bounded, therefore verifying condition (2b). Finally

condition (2c) is trivially verified by observing that the components of the jump vectors

in PEPA take values in {−1,0,1}, therefore ϕ(x,k) = 0 for sufficiently large k.

4.4 Case Study

In this section we apply the population-based semantics of PEPA to a more complex

PEPA model. We carry out numerical tests to assess the agreement between the deter-

ministic approximation and the stochastic process.

4.4.1 Three-Tier Distributed Application

The model, shown in Fig. 4.5, describes a three-tier distributed application. The pro-

cess definitions prefixed with Cl : indicate the client behaviour, which performs a syn-

chronous request to the system and interposes some thinking time between successive

requests. Clients communicate with server components, denoted by the prefix Sr : , over

the shared action types request and reply. The component Sr :Wait illustrates two classes

of request. Upon receiving a request, the information is retrieved via a database query

with probability pfresh; conversely, the server uses some cached data with probability

1−pfresh, modelled as a reply without access to the database. A server may also experi-

ence some recoverable error, which requires retrieving information from the database

in order to be able to accept further requests. When a database query is executed, the

server checks whether the information is up-to-date. With probability 1−pok this check

fails and the server forces an update of the dataset, by performing the action write. A

database server thread, denoted by the prefix Db : , is modelled as a two-state com-

ponent. The state Db : Wait exposes the two operations provided to the clients, while

the state Db : Update models some internal action which needs to be taken after every

operation. The system also comprises a robot component, denoted by the prefix Rb : ,
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Client

Cl :Request
def= (request,rc:request).Cl :Wait

Cl :Wait
def= (reply,rc:reply).Cl :Think

Cl :Think
def= (think,rc:think).Cl :Request

Server

Sr :Wait
def= (request,pfreshrs:request).Sr :Fresh

+(request,(1−pfresh)rs:request).Sr :Reply

+(fail,rs:fail).Sr :Repair

Sr :Fresh
def= (read,pokrs:read).Sr :Reply

+(read,(1−pok)rs:read).Sr :Force

Sr :Force
def= (force,rs:force).Sr :Write

Sr :Write
def= (write,rs:write).Sr :Reply

Sr :Reply
def= (reply,rs:reply).Sr :Wait

Sr :Repair
def= (read,rs:read).Sr :Wait

Database

Db :Wait
def= (read,rd:read).Db :Update

+(write,rd:write).Db :Update

Db :Update
def= (update,rd:update).Db :Wait

Robot

Rb :Gather
def= (crawl,rr:crawl).Rb :Write

Rb :Write
def= (write,rr:write).Rb :Gather

SystemApp
def= Cl :Request[Nc] BC

{request,reply}((
Sr :Wait[Ns] ‖ Rb :Gather[Nr]

)
BC

{read,write}

Db :Wait[Nd ]
)
/{read,write}

Figure 4.5: PEPA model of a three-tier distributed application
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Table 4.1: Aggregated state-space sizes for the three-tier application model

Nc,Ns,Nr,Nd 1 2 4 8 9 10

State-space size 32 315 7350 382239 800800 1574573

describing the behaviour of a program which routinely writes to the database after

gathering some data (modelled via the state Rb :Gather).

This model employs all of the operators of the language and features forms of inter-

actions which were not allowed in earlier approaches to deterministic approximation:

• Sequential components participating in shared activities may specify distinct local

rates (e.g., rc:request and pfreshrs:request).

• Two distinct local derivatives of the same sequential component may perform the

same action type (e.g., Sr :Fresh and Sr :Repair).

• Two distinct sequential component may compete for the same shared activitiy

(e.g., Sr :Write and Rb :Write).

• Support for hiding (e.g., here, read and write need not be seen by the client com-

ponents).

The use of large population levels in models of this kind is justified by interpreting

each distinct sequential component as a distinct process or thread of execution. Thus,

Cl :Request[Nc] indicates the total workload on the system, and the use of parallel com-

position expresses independence amongst the clients. Sr : Wait[Ns] is the thread pool

instantiated for the application server. Similarly, Db : Wait[Nd ] is the thread pool pro-

vided by the database. Note that this model of concurrency is in agreement with actual

policies implemented by most web and database servers.

In practice, it is not unusual to have applications with hundreds of clients or multi-

threaded servers with large pool sizes. However, such large-scale systems are difficult

to analyse due to state space growth which is usually rapid. For instance, Table 4.1

shows the state space sizes in the NVF up to a maximum population size of ten. Even

with this effective state-space reduction in place the state space is still more than 1.5

million states when low numbers of replications are present. Clearly, explicit state-

space enumeration makes the analysis intractable for scenarios with larger population

sizes. An alternative approach in order to avoid onerous storage requirements consists

of employing stochastic simulation. However, if on the one hand this reduces mem-

ory complexity dramatically, on the other it usually involves long execution times to

compute a statistically significant number of samples.
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4.4.2 Numerical Results

The validation tests were conducted on the following reduced model MApp obtained

from SystemApp:

MApp = Cl :Request BC
{request,reply}

((
Sr :Wait ‖ Rb :Gather

)
BC

{read,write}
Db :Wait

)
/{read,write}

The underlying ODE model is fully shown in Appendix A.1. Two hundred randomly

generated instances of this PEPA model were constructed by drawing the values of the

rate parameters from uniform distributions in ]0,50] and the values of the probabili-

ties pfresh and pok from uniform distributions in ]0,1[. The initial densities of the local

derivatives which do not appear in MApp were set to zero. The remaining densities

were chosen at random between one and eight. Each model instance implies a family

of CTMCs {Xn(t)} and the corresponding ODE. The dynamics of the Markov processes

at n = 1, n = 10, n = 50 and n = 100 were compared against the solution to the ODE.

As an indicative measure of the quality of the approximation, the percentage relative

errors between the expected value of the scaled Markov process Xn(t)/n and the deter-

ministic trajectory x(t) were calculated for each coordinate i of the NVF at any given

time point, according to the following equation:

%Errori
n(t) =

∣∣∣∣∣E
[
X i

n(t)/n
]
− xi(t)

E [X i
n(t)/n]

∣∣∣∣∣×100 (4.19)

The results discussed in this section are provided for t = 20.0, arbitrarily chosen as a

representative time point of the process since similar behaviour can also be observed for

other time points. The analyses were conducted using the Pepato library, available from

the PEPA Eclipse Plug-in software package [139]. For the sake of consistency, Gillespie’s

stochastic simulation algorithm (cfr. [75]) was employed for all values of n, although in

principle the CTMCs for n = 1 could be solved numerically given their relatively small

state space sizes. The simulations were terminated when the 95% confidence intervals

were within 10% of the statistical averages. The ODEs were numerically integrated

using a fifth-order Range-Kutta solver [61].

The validation results are reported in Table 4.2. Each coordinate of the popula-

tion vector behaves quantitatively differently. For instance, the deterministic estimates

of the database and robot components are significantly more precise than the other

sequential components. Nevertheless, in general the average approximation errors as

well as their variance across the validation set decrease with n. These results also

indicate that the deterministic approximation is sufficiently accurate for most practi-

cal purposes even at relatively low population levels. In particular, the scale factors

n ≥ 10 correspond to model instances with realistically sized pool sizes, i.e., hundreds
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Table 4.2: Comparison between the expected value of the Markov process and the ODE solution

at time t = 20.0. For each value of n and each coordinate in the NVF are listed the average

percentage relative errors and the 5% and 95% percentiles across the validation set of 200

randomly generated model instances

Component
n = 1 n = 10

5% Avg. 95% 5% Avg. 95%

Cl :Request 0.09% 19.62% 74.20% 0.01% 5.15% 29.09%

Cl :Wait 0.22% 17.09% 59.36% 0.03% 1.97% 7.57%

Cl :Think 0.70% 31.13% 87.57% 0.09% 2.96% 9.92%

Sr :Wait 0.31% 13.02% 50.49% 0.06% 2.46% 9.66%

Sr :Fresh 0.56% 20.21% 60.54% 0.09% 3.74% 12.81%

Sr :Force 1.20% 31.02% 85.57% 0.29% 4.39% 11.49%

Sr :Write 0.95% 27.68% 80.39% 0.21% 4.14% 12.38%

Sr :Reply 0.26% 24.69% 71.60% 0.07% 3.70% 13.10%

Sr :Repair 0.16% 13.19% 50.63% 0.01% 2.77% 11.37%

Db :Wait 0.01% 3.64% 20.21% 0.01% 0.77% 3.66%

Db :Update 0.04% 4.04% 17.08% 0.03% 1.07% 4.33%

Rb :Gather 0.05% 4.00% 16.56% 0.02% 1.09% 3.54%

Rb :Write 0.03% 2.82% 15.60% 0.02% 1.03% 3.12%

Component
n = 50 n = 100

5% Avg. 95% 5% Avg. 95%

Cl :Request 0.01% 1.87% 8.73% 0.01% 1.16% 4.85%

Cl :Wait 0.02% 0.76% 2.60% 0.02% 0.55% 1.70%

Cl :Think 0.06% 1.71% 6.00% 0.07% 1.62% 5.16%

Sr :Wait 0.05% 1.24% 4.56% 0.05% 1.23% 4.14%

Sr :Fresh 0.03% 2.09% 7.03% 0.06% 1.82% 5.68%

Sr :Force 0.22% 3.63% 9.17% 0.21% 3.27% 7.80%

Sr :Write 0.12% 2.91% 9.26% 0.10% 2.64% 8.91%

Sr :Reply 0.04% 1.69% 4.70% 0.05% 1.48% 5.44%

Sr :Repair 0.01% 1.32% 5.32% 0.02% 0.90% 3.92%

Db :Wait 0.01% 0.43% 1.70% 0.01% 0.38% 1.33%

Db :Update 0.01% 0.79% 2.93% 0.01% 0.81% 2.76%

Rb :Gather 0.02% 0.95% 3.23% 0.02% 0.89% 3.52%

Rb :Write 0.02% 0.91% 3.01% 0.01% 0.89% 3.00%
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of clients and server threads. In these cases the ODE solutions behave very well on

average, with worst-case situations which give acceptable errors. Furthermore, as al-

ready observed in [93], ODE analysis is much less expensive than CTMC analysis—in

this study the numerical integration of the ODE was found to be about four orders of

magnitude faster, executing in tens of milliseconds on average.

4.5 Conclusion

4.5.1 Passive Synchronisation

The result of convergence discussed above only holds for models with active synchro-

nisation. PEPA also allows passive activities, whose rate is denoted by the symbol >.

Informally, the meaning of a passive component is that the rate is determined by some

other (active) cooperating component. For instance, replacing the definition of Q with

Q
def= (α1,>).Q′ in Example 1 yields a model in which the rate of α1 is determined by

P only. According to the arithmetic of passive rates in Equation (3.2), the analogue of

(3.9) in this case is

Rpas =
p

NP p
>

NQ>
min(NP p,NQ>) =

p
NQ

,

which would suggest a similar transition to (4.6) in the NVF of type

(NP,0,NQ,0)
(α1,NP p)−−−−−→ (NP−1,1,NQ−1,1) (4.20)

However, unlike (4.6), this transition is enabled if NQ = 0, which leads to a mean-

ingless state of the chain because one component is negative. Instead, the presence

of passive components can be correctly captured by the following generating function

(see also [28] for a similar treatment):

ϕα1 (ξ,(−1,1,−1,1)) =

{
ξ1 p if ξ2 6= 0

0 if ξ2 = 0

Such a function is clearly discontinuous, hence it does not satisfy one condition for the

applicability of Kurtz’s theorem (in fact, the existence and uniqueness of the solution is

not even guaranteed by the condition of Lipschitz continuity on the vector field).

Our semantics can be extended in order to accommodate passive rates. With re-

spect to this example, the strategy consists in using a continuous generating function

ϕα1 (ξ,(−1,1,−1,1)) = ξ1 p and defining an exit time for the ODE, i.e. by setting T of

Theorem 2 as T = inf{t : x1(t) > 0∧ x3(t) = 0}. Thus, solutions to the ODE are accepted

until the deterministic process is in such a state that there are active components capa-

ble of carrying out the shared actions but there are no cooperating passive components
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Figure 4.6: Error probabilities (4.21) for Example 1. The following parameter set was used:

p = 0.01,q = 0.02, p′ = 0.05,q′ = 0.01,δ = (10,0,20,0),ε = 0.1. The y-axis is in logarithmic

scale

(notice that if x1(t) = 0 the shared activity is not enabled regardless of the population

level x3(t)).

Our approach can also incorporate the alternative treatment presented in [88], in

which a model with passive cooperation is translated into an equivalent one with active

synchronisation, yielding better results with regard to the agreement with the underly-

ing Markov process. Thus, a model with passive synchronisation may be subjected to

this transformation process before the population-based semantics is applied.

4.5.2 Error Probabilities

Kurtz’s theorem gives a result of asymptotic convergence and it was used to justify the

nature of the deterministic interpretation. Section 4.4 presented an empirical study

on quantifying the approximation error by comparing the ODE solution against the

expected value of the corresponding Markov process. Although they give confidence

on the applicability of differential analysis to realistically sized large-scale systems,

those findings are clearly model-dependent.

The question of establishing theoretical results for error probabilities has been stud-

ied by Darling and Norris [54]. It is possible to show that the CTMCs generated by the

population-based semantics of PEPA satisfy the conditions under which the following

bound for the error probability holds (cfr. [54, Theorem 4.2]):

P
(

sup
t≤t0

‖Xn(t)/n− x(t)‖> ε

)
≤ 2de−γ2/(2At0) +P(Ωc

0 +Ω
c
1 +Ω

c
2) (4.21)
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where d is the length of the state descriptor, γ = εe−Kt0/3, K is the Lipschitz constant

of the vector field. The events Ω0,Ω1,Ω2 are not described here for simplicity, as we

seek to provide a simpler version because it can be shown that Ω0 = Ω1 = Ω and that a

sufficient condition for Ω2 = Ω is

A≥ QJ2eγJ/(At0) (4.22)

where Q is the maximum transition rate of the CTMC and J is an upper bound for the

norm of the jump (the latter being easily known by the fact that the population-based

CTMC has jumps of size one). Therefore, this choice of A ensures that P(Ωc
0 +Ωc

1 +Ωc
2)=

0. The behaviour of the error probability is exemplified in Fig. 4.6, where, using the

supremum norm, it is calculated for Example 1 as a function of n and t0. Perhaps unsur-

prisingly, the error probability is well controlled by n. For instance, the approximation

error is more than 0.1 with probability less or equal to 10−10 until t ≈ 4 at n = 103,

t ≈ 29 at n = 104, and t ≈ 58 at n = 105. On the other hand, the trend suggests that for

relatively small n, say n = 10, the bound is meaningful only over a short time interval.

Furthermore, for any fixed n, the error probability does not behave satisfactorily as a

function of t0, as small changes of t0 may lead to changes in the error probability of

some orders of magnitude.

Nevertheless, under some circumstances the computation of theoretical bounds in

this manner can be of practical interest. It is not difficult to envisage an automatic

procedure that, given the vector field of the ODE underlying a PEPA model, calculates

its Lipschitz constant and the maximum transition rate Q, producing the error prob-

abilities for any desired time horizon t0 and error tolerance ε. Equation (4.21) could

also be useful to reason about the rate of convergence of the approximation error as a

function of n. However, writing the right-hand side of (4.21) as an explicit function of

n is difficult because (4.22), which depends on n through the maximum transition rate

Q, is transcendental. Indeed the results presented in Fig. 4.6 were obtained through

numerical interpolation of (4.22).





Chapter 5

Computing Performance Indices from

Fluid Models

The underlying ODE of a PEPA model may be referred to as a structured fluid model to

emphasize that the process calculus terms can be mapped onto structural elements of

the ODE. That is, each local derivative of a sequential component is assigned a state

variable and the synchronisation activities between components result in non-zero gen-

erating functions in the ODE vector field. This relationship permits the specification of

performance measures directly in terms of the process algebra model, from which the

definitions of rewards in the Markovian and deterministic interpretations can be ob-

tained. The operational semantics of the language provides a framework for verifying

properties which can be used to prove convergence of Markovian rewards to their corre-

sponding deterministic evaluations. This framework is employed to define and reason

about the convergence to fluid estimates of three fundamental indices of performance:

throughput, utilisation, and average response time, thus relating PEPA to other widely-

used formalisms for quantitative analysis. In particular, the definition of throughput

is analogous to that in stochastic Petri nets. On the other hand, utilisation is able to

express the behaviour of blocked resources and is similar to the notion of queue util-

isation. Throughput and population level information are combined in order to apply

Little’s law for the computation of steady-state average response time.

These indices are shown to enjoy asymptotic convergence to their deterministic es-

timates although this relation cannot be used for the quantitative assessment of the

accuracy of the approximation. Here convergence is studied by means of numerical

tests on a large array of PEPA models. Measures of throughput, utilisation, and average

response times for such models are evaluated both deterministically and stochastically

and the errors between the two estimates are computed. This investigation gives confi-

dence that the deterministic evaluation behaves satisfactorily at low population levels

53
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and show good rate of convergence with increasing problem sizes.

This chapter is organised as follows. Section 5.1 presents background material on

the computation of performance indices from Markov models. The main theoretical re-

sults of convergence of the performance rewards are presented in Section 5.2. Through-

put, capacity utilisation and average response time are motivated and formally defined

in Section 5.3, 5.4 and 5.5, respectively. Section 5.6 presents the results of numerical

validation for low population levels of the running example and of a more computa-

tionally challenging model with faster rate of state-space growth. Finally, Section 5.7

gives concluding remarks.

5.1 The Markov Reward Model Framework

In many performance modelling situations, the probability distribution of a CTMC can-

not directly provide valuable insight into the behaviour of the system. Rather, perfor-

mance indices are usually described by means of reward structures, functions which

associate real-valued rewards to each state of the CTMC. Rewards of this kind are

defined by a function ρ : X → R of the state space of a CTMC X(t). Alternatively,

rewards may be assigned to state transitions, in which case they are called reward im-

pulses. The stochastic process ρ(X(t)) is called a reward model. Reward models have a

long tradition in performability analysis, which is concerned with the composite evalu-

ation of performance and reliability measures of degradable computer systems [111].

Performability metrics may be defined through ρ. The accumulated reward Y (t) is a

transient measure which gives the area under ρ(X(t)), i.e.,

Y (t) def=
Z t

0
ρ(X(s))ds (5.1)

and the time-averaged reward W (t) divides the accumulated reward over the length of

the time period,

W (t) def=
Y (t)

t
. (5.2)

For example, the most basic form of availability may consist of a reward structure Av

which assigns the reward 1.0 to each operational state of the chain and 0 to the non-

operational states (e.g., [135, 148]). Thus, E [Av(t)] gives the average instantaneous

availability of the system at time t and the total availability over the interval [0, t] is

given by E
[R t

0 ρ(Av(s))ds
]
. Considerable attention has been paid to the evaluation of the

cumulative distribution of Y (t)—an extensive review of solution techniques is provided

in [112] (in particular Section 3.3).

Clearly, the framework of Markov reward models may be used for the evaluation of

purely performance-related measures. This appeared as early as in 1978 in the work of
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Beaudry where the notion of computation availability is related to the expected value of

a reward structure called computation capacity, which gives the amount of processing

power of a system at any point in time. Trivedi et al. give a taxonomy of performance

evaluation reward models in [148], which includes examples of throughput [111],

bandwidth specification [135], and average response time [152].

When the CTMC is inferred from a model specification language, it is of utmost

importance to be able to define the Markov reward model directly in terms of the

constituents of the high-level description [87]. This question has been investigated, for

instance, in the context of stochastic activity networks [129] and generalised stochastic

Petri nets [20]. This problem also arises in PEPA and has previously been considered

in logical terms [49]. In this respect, the first contribution of this chapter is to de-

fine notions of throughput, capacity utilisation, and average response time as reward

structures which may be transparently inferred from the process algebraic description

through the population-based semantics. As a practical consequence, this approach is

not tied to a particular model and can be easily implemented in a software tool, as

will be discussed in Chapter 7. More important is the question of characterising under

which conditions the PEPA reward model admits a deterministic approximation of the

form ρ(x(t)), i.e., whether the reward structure ρ applied to the ODE underlying a PEPA

model is an approximation of the reward model ρ(Xn(t)) for sufficiently large n. This

relationship has a crucial implication because it permits estimations of performance

indices at a dramatically reduced computational cost.

5.2 Fluid Approximation of Reward Structures

To illustrate that the ODE solution x(t) is not always sufficient to gain insight into the

performance characteristics of the model, consider, for instance, two configurations of

Example 1, in which all rates of one instance (i.e., p, p′, q, q′) are doubled with respect

to the rates of the other instance. The solutions to the underlying ODE (3.19), depicted

in Fig. 5.1 for xP(t) and xQ(t), reveal similar behaviour in the steady state (here, after

t ≈ 50). Indeed, it is possible to show that any pair of instances such that the rates

of one instance are multiples (with the same factor) of the rates of the other instance

have the same equilibrium distribution of the underlying CTMC (hence, of the density

process). However, this fails to capture the basic intuition that one model should be

faster than the other, because of the rate configurations used. As will be shown in

Section 5.3, the different behaviours of these two models are captured by the reward

structure for the calculation of throughput. The remainder of this section is concerned

with a general set-up of the framework within which will be defined all the reward
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(b) Fast model

Figure 5.1: Deterministic trajectories for the densities of components P and Q in Example 1

for two distinct configurations. (a) and (b) have the same initial density but the rates in (b) are

obtained by doubling the rates in (a).

structures presented in this chapter.

The reward structures considered here will be functions ρ : Rd → R. The domain

Rd follows from the fact that a state of a CTMC derived from the population-based

semantics of PEPA is a vector in Zd . Let ρk be the reward rate associated with a state of

the CTMC ranged over by k. Given a probability distribution π(t), the expected value

of the performance metric is calculated concisely as:

Performance Index = E [ρ(X(t))] = ∑
k

πk(t)ρ(ξk) (5.3)

where ξk denotes the k-th state of the population-based CTMC.

Example 4. The expected population level of the sequential component Ci, j can be inter-

preted as the performance metric induced by the projection function Pi, j : Rd →R,Pi, j(ω) =

ωi, j,

E [Pi, j(X(t))] = ∑
k

πk(t)ξk
i, j

The deterministic approximation of a reward model may be related to the family of

CTMCs {Xn(t)} defined in Theorem 1. Under the conditions imposed in the theorem,

the convergence property (4.4) implies that, for any fixed t, the sequence of random

variables {Xn(t)/n} converges in probability toward x(t) (as observed, e.g., in [123]):

lim
n→∞

P
(
|Xn(t)/n− x(t)|> ε

)
= 0, for every ε > 0 (5.4)

From now on, the convergence (5.4) will be denoted by the usual notation P−−→, e.g.,

Xn(t)/n P−−→ x(t). The main objective of this section is to determine under which con-

ditions convergence in probability of the density process implies convergence for the
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reward model in the form ρ(Xn(t)/n) → ρ(x(t)). This constitutes the formal justifica-

tion of the use of the deterministic approximation for the computation of performance

metrics from PEPA models. The reasoning will be mostly based upon the Continuous

Mapping theorem, which ensures convergence in probability for functions of stochastic

variables.

Theorem 3 (Continuous Mapping (cfr. [19], Section 29)). Let Yn be a random variable

with ranges in Rd and Yn
P−−→ c,c ∈ Rk. Let g : Rd → Rk be continuous at c. Then,

g(Yn)
P−−→ g(c).

This result is directly applicable to study the convergence of ρ(Xn(t)/n) toward

ρ(x(t)) by letting Yn(t) = Xn(t)/n, for any t. Unfortunately, this theorem establishes the

convergence of ρ(Xn(t)/n), while the performance index of interest for a CTMC of a

PEPA model is expressed in terms of ρ(Xn(t)) (cfr. (5.3)). Therefore, metric specifica-

tions will be restricted to reward structures which are not explicitly dependent upon

the scaling factor n. In other words, the reward structure ρ must satisfy the condition

that there exists some ρ′ such that

ρ(Xn(t)/n) =
ρ(Xn(t))

ρ′(n)
. (5.5)

Then, the asymptotic convergence in probability ρ(Xn(t)/n) P−−→ ρ(x(t)) intuitively means

that, for sufficiently large n,

ρ(Xn(t))≈ ρ
′(n)ρ(x(t)), (5.6)

which gives an approximate estimate of ρ(Xn(t)) in terms of the deterministic quantity

ρ(x(t)), as required. The performance metrics defined in this paper are developed

within this framework. Specifically, they will be expressed in terms of the generating

functions, i.e., ρ(ω) = ρ(ϕα(ω, l)), hence the verification of these conditions can be

derived from the properties of ϕ. This is particularly useful because ϕ has been proven

to be continuous and to give rise to a family of density-dependent CTMCs. In particular,

the latter property meets the condition in (5.5), since

ϕα(Xn(t)/n, l) =
ϕα(Xn(t), l)

n
, ∀ l ∈ Zd ,α ∈ A (5.7)

Although these results are important from a theoretical standpoint for the justifica-

tion of the use of the differential reward evaluation, they do not provide estimates of

the approximation error for finite scale factors. The problem of assessing the accuracy

quantitatively is clearly of great significance in most applications. In particular, it is

often important to establish the accuracy for small scale factors because even for such
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factors the associated CTMC may be too large to permit feasible numerical solution

and thus deterministic estimates constitute the only form of evaluation available. Un-

fortunately, theoretical bounds developed in the context of density dependent Markov

chains (cfr. Section 4.5.2) cannot be used here because in general ρ(Xn(t)) does not

enjoy the Markov property (cfr., e.g., [98]). Here, the accuracy for finite scale factors

will be gauged more pragmatically by making a direct comparison between the expec-

tation of the Markovian reward and its corresponding deterministic evaluation, using

the following notion of percentage relative error:

Error % =
∣∣∣∣E [ρ(Xn(t)/n)]−ρ(x(t))

E [ρ(Xn(t)/n)]

∣∣∣∣×100 =
∣∣∣∣E [ρ(Xn(t))]−ρ′(n)ρ(x(t))

E [ρ(Xn(t))]

∣∣∣∣×100 (5.8)

5.3 Action Throughput

Throughput is a performance metric which has counterparts in other formalisms for

quantitative evaluation. In queueing theory, it is associated with a station and denotes

the frequency of service; in stochastic Petri nets, it indicates the frequency of firing of

a transition. In PEPA, throughput measures the frequency of execution of an action

type. Based on the definition provided later in this Section, action throughput is more

adequate for the comparison between the two systems in Fig. 5.1—the steady-state

throughputs of the model in Fig. 5.1b are twice as much as the throughputs of the

model in Fig. 5.1a, as one would intuitively expect from the inspection of the two

model definitions.

Action throughput is introduced in [92] for the original Markovian interpretation

of the language, which assigns a PEPA component Pk to each state of the underlying

CTMC. For a probability distribution π(t) of the CTMC, the throughput of an action type

α ∈ A is defined as

∑
k

πk(t) tk, tk = ∑
(α,r)∈Act(Pk)

r (5.9)

where Act(Pk) denotes the set of activities enabled by component Pk. The reward

sums over all the rates of the activities which are labelled with the action type α.

An equivalent formulation for the CTMC in the population-vector form is given by

observing that the generating functions can be interpreted as the counterpart of the

activity multiset. Each jump size denotes the frequency of a distinct activity, hence

summing over all the activities of type α gives the throughput of interest for each state.

Thus, the Markovian reward is ∑k πk(t)∑l∈Zd ϕα

(
ξk, l

)
which is induced by the following

definition.

Definition 10. The reward function for the action throughput of α, denoted by T hα(ω),
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is

T hα(ω) = ∑
l∈Zd

ϕα (ω, l)

From this definition, the corresponding deterministic reward is calculated as

T hα(x(t)) = ∑
l∈Zd

ϕα (x(t) , l)

Throughput enjoys a stronger notion of convergence than convergence in probabil-

ity, i.e., convergence in mean (written E−−→):

lim
n→∞

E [T hα(Xn(t)/n)−T hα(x(t))] = 0, for any t and α.

A sufficient condition for convergence in mean of a succession of random variables

which enjoy convergence in probability is provided by the following

Theorem 4 (Dominated Convergence). If Yn
P−−→ Y and Yn is uniformly bounded, i.e.,

there exists M such that |Yn|< M almost surely, then Yn
E−−→ Y .

Theorem 5. Let {Xn(t)} be the sequence of random variables of the density process of a

PEPA model, for any fixed t. Let α ∈ A . If T hα is continuous at x(t) then,

T hα (Xn(t)/n) E−−→ T hα(x(t)).

Proof. By Theorem 3 we have that T hα (Xn(t)/n) P−−→ T hα(x(t)) because by definition,

throughput is a sum of generating functions which are Lipschitz continuous. There-

fore, in order to prove convergence in mean it is sufficient to check for uniform bound-

edness of T hα (Xn(t)/n). Using the same arguments as in Proposition 3, the family

of CTMCs {Xn(t)} is such that a coordinate ξi, j of the population vector for the n-th

CTMC takes values in
{

0,1, . . . ,∑
Ni
k=1 nδi,k

}
, hence {Xn(t)} may be bounded by a closed

(d-dimensional) interval which depends on δ (and does not depend on n). On that

interval the Extreme Value Theorem (e.g. [66], Theorem 11.22), holds because of the

continuity of T hα. Therefore, T hα(Xn(t)/n) is also bounded, as required to complete

the proof.

The property in (5.5) is trivially satisfied because it holds for the generating functions

(cfr. Lemma 3). In particular, it holds that T hα(Xn(t)/n) = T hα(Xn(t))/n for any α ∈ A
and n ∈ N. With regard to Example 1, the following reward functions are defined:

T hα2(ω) = p′ω2 (5.10)

T hlog(ω) = q′ω4 (5.11)

T hα1(ω) = min(pω1,qω3) (5.12)

These equations may be used, for instance, to reveal the difference in the behaviours

of the two models illustrated in Fig. 5.1—in particular, given the steady-state regime,

the faster model has twice as much throughput as the slower one.



60 Chapter 5. Computing Performance Indices from Fluid Models

5.3.1 Location-Aware Throughput

According to Definition 10, throughput is a system-related measure as it does not take

account of the identity of the sequential components involved. However, the formula-

tion can be refined so as to include location awareness and to restrict the estimation

of throughput to a subset of components Ci, j in the system. Let C be such a subset,

L(C ) gives the subset of jumps l related to transitions in which the elements of C are

involved. Such transitions are obtained by considering all the jumps l for which −1 is

present in one of the coordinates in the population vector corresponding to the deriva-

tives in C . As observed above, li, j =−1 indicates that the population of the component

Ci, j is decreased by one because of the transition, i.e., the activity is being performed

by the component. Thus,

L(C ) =
{

l ∈ Zd : li, j =−1∧Ci, j ∈ C
}
. (5.13)

The location-aware throughput of α with respect to C , denoted by T hα(ω |C ), is

T hα(ω |C ) = ∑
l∈L(C )

ϕα (ω, l) . (5.14)

In addition to preserving continuity, it is straightforward to see that, for any C and α,

T hα(ω |C )≤ T hα(ω), for any ω. Location-aware throughput is not useful in Example 1

because any sequential component is always involved in the activities which it enables.

For instance, the action α1 is carried out by both Q and P, and the sets of independent

actions enabled by the two components are disjoint. Suppose now that the definition

of P′ in Example 1 is replaced with

P′
def= (α3, p′).P,

i.e., the action type α2 is replaced by α3. This gives rise to an identical underlying differ-

ential equation although the generating function associated with the above definition

is now

ϕα3

(
ξ,(1,−1,0,0)

)
= p′ξ2

in place of ϕα2

(
ξ,(1,−1,0,0)

)
= p′ξ2. Since the action set in the cooperation opera-

tor is not changed, the activities α3 performed by P′ and Q′ are carried out without

synchronisation. In this modified model, the location-aware throughputs of action α3

are

T hα3

(
ω |{P,P′}

)
= p′ω2

T hα3

(
ω |{Q,Q′}

)
= q′ω4

and

T hα3(ω) = T hα3

(
ω |{P,P′}

)
+T hα3

(
ω |{Q,Q′}

)
.
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Another useful application of location-aware throughput is in cases where there are

two components performing a shared action with a third component, independently

from each other. Consider for instance the following definition of another client

R
def= (α1,r).R′

R′
def= (α4,r′).R

and the system equation

System′ def= (P[NP] ‖ R[NR]) BC
{α1}

Q[NQ]

(An analogous scenario will be discussed in more detail in Section 5.6.) The compo-

nents P and R will be mapped onto two distinct coordinates in the population vector

representation. The empty cooperation set between them indicates no cooperation, but

each component will independently perform the action α1 with Q. In this case the es-

timates T hα1

(
ω |{P}

)
and T hα1

(
ω |{R}

)
disaggregate the overall throughput T hα1 into

the throughputs of two constituting interactions between P and Q, and R and Q.

5.4 Capacity Utilisation

Capacity utilisation is a performance metric which may be associated with a sequential

component to indicate the proportion of time that it engages in some activity, either

independently or in synchronisation with other components. This is analogous to the

definition of utilisation in queueing networks, which denotes the proportion of time

that a service centre serves a customer. This section gives an informal interpretation

of capacity utilisation in PEPA, presents its definition with respect to the framework

developed in Section 5.2, and applies this notion to the running example.

5.4.1 Motivation

The question of how often a device is utilised in a system arises frequently in perfor-

mance studies. A device that is under-utilised may represent wasteful consumption of

resources, whilst devices with utilisation close to unity may indicate overload and a

bottleneck which affects the system’s overall behaviour. For instance, let us consider

Example 1, and suppose one is interested in the utilisation of the sequential component

in the left hand side of the cooperation C1 = {P,P′} (similarly, let C2 = {Q,Q′}). For sim-

plicity, let us consider the simple case NP = NQ = 1, which gives rise to a state space

representation in the NVF shown in Fig. 5.2. Let πk be the value of some probability

distribution for state ξk,1≤ k ≤ 4.

It is interesting to note that although the sub-vector for C1 is the same in ξ1 and ξ3,

the behaviour of the two states is profoundly different. In ξ1, both C1 and C2 enable α1,
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ξ3

ξ1 ξ2

ξ4
(α2, p′)

(α3, q′)

(α1,min (p, q))

(α2, p′)

(α3, q′)

Figure 1: Test

1Title: State machine :Tags: Manual, Automata, Graphs
Another examle from the manual.
— Author: Till Tantau — Source: The PGF/TikZ manual

1[:]

1

State P P′ Q Q′

ξ1 1 0 1 0

ξ2 0 1 0 1

ξ3 1 0 0 1

ξ4 0 1 1 0

Figure 5.2: State space of Example 1 for NP = NQ = 1

whereas in ξ3 the activity cannot be carried out because it is not enabled by C2. Similar

considerations apply with respect to the behaviour of C2. In this case, (1,0) is the same

sub-vector in ξ1 and ξ4 although action α1 cannot be carried out in ξ4 because it is not

enabled by C1. Therefore, an intuitive requirement for the notion of capacity utilisation

is that it take account of these different dynamic behaviours across the state space.

In addition, it is also natural to assign a unitary capacity utilisation to independent

actions, to capture the observation that they are always enabled and their execution is

not dependent upon the behaviour of other components of the system.

A rather crude reward structure for the capacity utilisation of C1 may be:

Capacity Utilisation of C1 = 1π1 +1π2 +0π3 +1π4 (5.15)

where 1 is assigned to ξ1 because the shared action can be performed, and to ξ2 and

ξ4 because C2 is engaged in an independent action. However, this definition fails to

account for potential under-utilisation arising from the execution of α1. The definition

of P may be interpreted as that of a component which can perform the action at the

maximum rate of p. According to the semantics of PEPA, the corresponding transition

from ξ1 to ξ2 occurs at the rate min(p,q). Therefore, the value min(p,q)/p seems better

suited to measure the fraction of the upload capacity of C1 that is consumed in state ξ1.

In general, the reward assigns a fraction to each state of the CTMC. The numerator

of this fraction measures the total activity rate enabled, whereas the denominator indi-

cates the maximum rate exhibited by the component. This latter quantity corresponds

to the component’s apparent rate, denoted by rα(·) (cfr. Definition 1). Thus, the unitary

values of capacity utilisation for ξ2 and ξ4 may be interpreted as the fraction p′/p′.

Clearly, independent actions are always assigned unitary utilisation. Hence, (5.15) can

be revised as

Capacity Utilisation of C1 =
min(p,q)

p
π1 +1π2 +0π3 +1π4 (5.16)
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Notice that the fraction min(p,q)/q could be analogously assigned to ξ1 for the compu-

tation of the capacity utilisation of C2:

Capacity Utilisation of C2 =
min(p,q)

q
π1 +1π2 +1π3 +0π4 (5.17)

The following reward function extends the definition of capacity utilisation to the

population-based representation of an arbitrary PEPA model.

Definition 11 (Capacity Utilisation). Let Ci denote a derivative set in the reduced context

with Ni distinct derivatives Ci,1,Ci,2, . . . ,Ci,Ni . The capacity utilisation of Ci, denoted by

CUCi , measures the proportion of time that the derivatives of Ci are engaged in some

action:

CUCi(ω) =
∑α∈A ∑l∈L(Ci) ϕα(ω, l)

∑α∈A ∑
Ni
j=1 rα(Ci, j)ωi, j

where L is defined as in (5.13).

The numerator of Definition 11 gives the overall utilised capacity by the components

which exhibit the local states in Ci. Similarly, the denominator provides the overall

available capacity of all such components, as it sums across the apparent rates of all

local states, for all action types enabled. Thus, the fraction measures the capacity of Ci

that is utilised by the system. The following proposition restates Theorem 3 for capacity

utilisation.

Proposition 4. If CUCi is continuous at x(t) then CUCi

(
Xn(t)/n

) P−−→CUCi

(
x(t)

)
.

To show that capacity utilisation satisfies (5.5), write CUCi explicitly as a fraction

between two functions N(ω) and D(ω) which satisfy the condition in (5.5):

CUCi(Xn(t)/n) =
N(Xn(t)/n)
D(Xn(t)/n)

=
N(Xn(t))/n
D(Xn(t))/n

= CUCi(Xn(t)).

Convergence in mean cannot be proven using the arguments of Theorem 5 because

CUCi is not continuous in 0d . However, the reward function is continuous at all values

taken by x(t). To show this, notice that CUCi is a rational function of two Lipschitz-

continuous functions. Thus, it is sufficient to establish that ∑α∈A ∑
Ni
j=1 rα(Ci, j)xi, j(t) > 0

for all t. But at least one coordinate of x(t) must be strictly positive, because of the

conservation law of Proposition 3. Let xi, j be such a coordinate. The corresponding

component Ci, j must enable at least one action type α, which yields rα(Ci, j) > 0, as

easily inferred from the definition of apparent rates (cfr. Definition 1).

In the running example, the capacity utilisations of two sequential components are

CUC1 =
min(pω1,qω3)+ p′ω2

pω1 + p′ω2
(5.18)

CUC2 =
min(pω1,qω3)+q′ω4

qω3 +q′ω4
(5.19)
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Figure 5.3: Markovian capacity utilisations for Example 1

As a practical application, Fig. 5.3a shows a steady-state capacity utilisation (5.18)

in the Markovian setting with respect to the parameters q and NQ. Two values for the

rate q were considered, i.e., 1.0 and 2.0, and NQ was varied between 1 and 100. All the

other parameters of the system were set as follows: p = 1.0, p′ = 100.0,q′ = 50.0 and

NP = 10. Here, the utilisation increases in the region 1≤ NQ ≤ 10 because the ten com-

ponents C1 are increasingly likely to find C2 to cooperate with. Clearly, when NQ > 10

the probability of finding an available C2 component is so high that the capacity of C1 is

fully utilised. Figure 5.3b shows the sensitivity analysis of (5.19). Qualitatively, the tra-

jectory of the two curves is in agreement with the intuition that, as NQ increases, each

of the sequential components is less utilised on average. A particularly interesting point

is NQ = 10, i.e., there are as many C1 as C2 components. When q = 1.0 they have the

same rate for the shared action, and the high capacity utilisation (i.e., 0.992) obtained

in this case highlights that each pair is very likely to be engaged in the synchronised

activity. However, the same model with q = 2.0 yields a capacity utilisation of about

50%—this is explained by the fact that the capacity of C2 is twice as much as that of C1.

5.5 Average Response Time

Throughput and capacity utilisation are meaningful performance metrics at every time

point of the system. Indeed, it is possible to define the notion of peak and minimum

across a finite time interval, or to normalise these metrics with respect to the time-frame

of interest, e.g. as in (5.2). Instead, the notion of average response time discussed in

this section can only be applied to systems under equilibrium conditions because it is

based on Little’s law [110], providing the response time as a function of a specific kind

of location-aware throughput and of the steady-state population levels of the model’s
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Figure 5.4: Schematic representation of the system used for the application of Little’s law to

PEPA models

sequential components.

5.5.1 Little’s Law

In its general formulation, Little’s law considers a system under steady-state conditions

with L users, arriving at rate λ and subject to an average waiting time W . The law

states that

L = λW. (5.20)

Here, this relation is used to determine W = L/λ, i.e., the average response time is

estimated from the computation of population levels and action throughputs, which

can be obtained as discussed in the previous sections. A slightly simpler formulation of

Little’s law requires the computation of only one estimate and may be applied for closed

systems such as in Fig. 5.4. The system comprises a total population of N users. The

arrival rate for service is λ, the average service time is W , and each user spends some

time Z between successive admissions into the system. Under steady-state conditions,

the following holds

N = λ(Z +W ) (5.21)

which can be used to give W = N/λ− Z. Note that (5.21) is obtained by applying

(5.20) to the system comprising the thinking stations and the service, observing that

the waiting time is the sum of the average waiting times in the two sub-systems. This

expression requires the calculation of λ, since N and Z are model parameters.

The PEPA model of Example 1 can be thought of as an instance of the system consid-

ered in Fig. 5.4. The thinking stations are represented by the number of components

which exhibit the local derivative P′, whilst the service centre comprises the compo-

nents which exhibit the local derivatives P, Q, and Q′. The total number of users is

N = NP, and the average thinking time Z = 1/p′. Finally, the arrival rate at the service
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Figure 5.5: Derivation graph of a sequential component. The local derivatives are partitioned

into S = {S1,S2} and S = {S1,S2,S3}, interpreted as the component being inside and outside the

system, respectively. Thus, transitions t3 and t7 are paths of entry into the system. Conversely,

the system is exited via t8

centre λ is calculated as the steady-state action throughput of α2. Thus, the average

response time can be calculated as follows

W =
NC

T hα2(∞)
− 1

p′
. (5.22)

This formulation can be applied to both semantics, and the throughput can be calcu-

lated as discussed in Section 5.3. Interestingly, many descriptions of user behaviour in

concurrent systems are amenable to this form of analysis:

Asynchronous Send

α→ Send → α

Synchronous Send

α→ Send → Receive→ α

Send/Reply

α→ Send → Receive→ Reply→ α

where Send, Receive, and Reply may express suitable synchronisation activities with

communication partners to model message exchange. In all cases a user is modelled

as a cyclic sequential component in which one local derivative, e.g., P′, is interpreted

as the user being outside the system whilst all the other derivatives are associated with

actions performed within the system.

Such a syntactic structure of the user component has been assumed in previous

work on this topic (e.g., [45]), though it cannot be used for more complex user de-

scriptions. For instance, Fig. 5.5 shows the derivation graph of one such sequential

component, in which multiple paths of entry and exit are defined. The following section

is concerned with the development of a general formulation for the average response

time which does not require any assumption for the applicability of the analysis.
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5.5.2 General formulation

Let Ci be the component of the reduced context representing the user with respect to

whom the average response time is to be computed. Let Si ⊂ Ci,Si 6= /0 be the subset of

derivatives which indicate the presence of the user in the system, Si induces a binary

partition {Si,Si}. The derivatives in Si denote the states in which the user is outside

the system. Let µl
i and µl

i be the subsets of the jump vector l corresponding to the

population levels of Si and Si, respectively. By the population-based semantics of PEPA,

the number of non-zero elements in µl
i ∪ µl

i can be either zero or two. There cannot

be only one non-zero element because this would imply an increase (resp., decrease)

in the population level of some derivative without a corresponding decrease (resp.,

increase) in the population level of some other derivative. However, this is clearly

not allowed by the fact that the derivation graphs of the sequential components are

strongly connected—the dynamic creation or destruction of sequential components is

not possible. These non-zero elements must be −1 and +1, because the transition

records unitary changes in the population levels. Thus, there are five cases according

to the location of the non-zero elements:

• {−1,+1} 6∈ µl
i ∪ µl

i indicates a jump in which the population levels of Ci are not

affected (for instance, an independent action performed by some other sequential

component in the system).

• {−1,+1} ∈ µl
i indicates a transition within the system in which the user is en-

gaged.

• {−1,+1} ∈ µl
i is the symmetric case in which user is engaged, though the activity

takes place outside the system.

• {−1} ∈ µl
i and {+1} ∈ µl

i represents the departure of one user from the system,

as the population level of some component in Si is decreased by one, with a

corresponding increase observed for the population of some component in Si.

• {−1} ∈ µl
i and {+1} ∈ µl

i is the subset of jumps of interest with respect to the

computation of the average response time, as it represents the arrival of users

into the system. The population level of some component in Si is increased by

one, and, correspondingly, the population of some component in Si is decreased.

The set of jumps for the sequential component in Fig. 5.5 is shown in Table 5.1. The

following two definitions specify how to calculate the throughput of arrivals and the

average number of users in a PEPA model.
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Table 5.1: The set of subvectors µl
i and µl

i for the sequential component in Fig. 5.5. Transi-

tions t3 and t7 indicate the entry of a user into the system, because a population level in µl
i is

incremented by one and, correspondingly, a population level in µl
i is decreased by one.

Transition
µl

i µl
i

Si
1 Si

2 Si1 Si2 Si3

t1 0 0 −1 +1 0

t2 0 0 −1 0 +1

t3 +1 0 −1 0 0

t4 0 0 +1 −1 0

t5 0 0 0 −1 +1

t6 0 0 0 +1 −1

t7 0 +1 0 0 −1

t8 −1 0 +1 0 0

t9 +1 −1 0 0 0

Definition 12. The throughput of the arrivals of Si into the system, denoted by λSi , is the

sum of the throughputs, for all action types, across all transitions such that {−1} ∈ µl
i and

{+1} ∈ µl
i:

λSi(ω) = ∑
α∈A ,{−1}∈µl

i ,{+1}∈µl
i

ϕα(ω, l) (5.23)

Definition 13. The average number of users in the system, denoted by LSi , is

LSi(ω) = ∑
Ci, j∈Si

ωi, j (5.24)

Using the same arguments as in Theorem 5, the following proposition holds.

Proposition 5. λSi(Xn(t)/n) E−−→ λSi(x(t)),LSi(Xn(t)/n) E−−→ LSi(x(t)), for any Si ⊂ Ci,Si 6= /0.

Based on this result, the following approximation for the calculation of the fluid

response time will be used:

LSi(x(t))
λSi(x(t))

≈ E [LSi(Xn(t)/n)]
E [λSi(Xn(t)/n)]

=
E [LSi(Xn(t))]/n
E [λSi(Xn(t))]/n

=
E [LSi(Xn(t))]
E [λSi(Xn(t))]

(5.25)

where the first equality follows directly from Definitions 12 and 13, and the rightmost

fraction corresponds to the definition of average response time for the n-th Markov

chain of the family of PEPA models. As stated above, although this calculation is in

principle applicable to any time point, it is only meaningful under steady-state con-

ditions. In Example (1), the partition Si = {P},Si = {P′} gives rise to the following
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Figure 5.6: Markovian average response time calculation for Example 1

definitions of LSi and λSi for the average response time of C1

LSi(ω) = ω1 (5.26)

λSi(ω) = p′ω2 (5.27)

Figure 5.6 shows an example of (CTMC-based) average response time calculation for

this model, experimenting with population levels of C1 ranging from 1 to 50 and two

values for rate q′. In all cases NQ was kept fixed at 10. As expected, the response

time does not change significantly when the population level of C1 is less than that of

C2. By contrast, a dramatic increase is observed when the number of C1 components

is significantly more than the number of C2 components. Clearly, increasing q′ reduces

the response time although it does not impact on its qualitative behaviour.

5.6 Numerical Validation

This section presents numerical validations of the performance metrics introduced in

the previous sections, and is divided in two parts. Section 5.6.2 is concerned with the

validation of Example 1. Section 5.6.3 examines a more complex model, which has the

following features:

• Use of the choice operator to describe alternative behaviour.

• More structured system equation, comprising five sequential components and a

pattern of composition similar to that described in Section 5.3.1.

• Faster rate of state-space growth.

• Unlike Example 1, the average response times cannot be calculated using the

simplified formulation (5.21).
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5.6.1 Methodology

The model descriptions were parametrised by the activity rates and the population

level density. A set of 200 model instances is obtained by assigning randomly chosen

parameters drawn from uniform distributions. The objective of this approach is to mea-

sure the quality of the deterministic approximation on a broad spectrum of behaviours,

from models which exhibit poor indices (i.e., low capacity utilisation or high average

response times) to those with good performance. Each model instance was analysed

stochastically for three scale factors. As the state space size grows very quickly with this

parameter, the choice of the actual scale factors used in those tests strongly depended

on the feasibility of the solution of the CTMCs.

The validation regarded performance estimates at equilibrium—this is necessary

for the computation of average response times whereas steady-state measures were

just taken as representative conditions for the calculation of throughput and capacity

utilisation since any other time point shows similar behaviour. Detection of steady-state

regime of the differential process was based on a condition of relative error between

two successive ODE integration steps. A tolerance of 1× 106 was used in this study.

Stochastic simulation was carried out using the method of batch means.

5.6.2 Validation of Example 1

The instances of this model were obtained by drawing from uniform distributions in

[0.1,50] for all rates (i.e., p, p′,q,q′) and considering densities of the kind (A,0,B,0),

where A and B were chosen at random in {1,2, . . . ,5}. This choice implies that the

initial local states of the two derivatives are P and Q, respectively. The scale factors

used in this validation were {1,10,50}. For example, a model with density (2,0,1,0)

was analysed three times, each with the following initial population levels: (2,0,1,0),

(20,0,10,0), and (100,0,50,0). Thus, the model instance with the largest state space

has 63001 states, obtained with scale factor n = 50 and density (5,0,5,0) (the rate

parameters have no impact on the size of the CTMC).

Table 5.2 shows the average approximation errors for some performance indices

defined in the previous sections. The results confirm that better agreement is obtained

as the scaling factor is increased. In this example, the approximation is already sat-

isfactory at n = 1, and it is excellent at n = 50 (with an average error of less than 1%

for all performance indices). Finally, Table 5.3 shows the number of model instances

whose approximation error is less than 5%, demonstrating that the quality of the error

is consistent across all model instances.
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Table 5.2: Average approximation errors for Example 1 over a sample of 200 model instances

n T hα1 CUC1 CUC2 W

1 4.87% 7.84% 7.87% 8.43%

10 0.51% 1.22% 1.11% 1.28%

50 0.08% 0.21% 0.19% 0.01%

Table 5.3: Number of the 200 model instances of Example 1 with error less than 5%

n T hα1 CUC1 CUC2 W

1 147 106 112 131

10 196 189 188 191

50 200 200 200 200

5.6.3 A More Complex Model

This model comprises the description of two distinct classes of users, C1 and C2, de-

fined as follows (alongside the definitions are the corresponding coordinates in the

population vector):

ξ1 C1 :Think
def= (think,(1−p)pdb t1).C1 :UseDb

+ (think,(1−p)p′db t1).C1 :UseCpu

+ (think,pt1).C1 :Think′

ξ2 C1 :UseCpu
def= (useCpu,c1).C1 :Think

ξ3 C1 :UseDb
def= (useDb,d1c1).C1 :Think

ξ4 C1 :Think′
def= (think, t′1).C1 :UseCpu

ξ5 C2 :Think
def= (think,qdb t2).C2 :UseDb

+ (think,q′db t2).C2 :UseCpu

ξ6 C2 :UseCpu
def= (useCpu,c2).C2 :Think

ξ7 C2 :UseDb
def= (useDb,d2c2).C2 :Think

The use of the choice operator in C1 : Think and C2 : Think allows the specification of

conditional behaviour. The action think is performed at rates t1 and t2 by C1 and C2

respectively. With probability p, C1 moves into a second thinking state, C1 :Think′. With

probability 1−p the component may behave either as C1 :UseDb, with probability pdb,

or as C1 :UseCpu, with probability p′db = 1−pdb. The behaviour of C2 is similar, although
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the second thinking process is not exhibited. Both components may perform the actions

useDb and useCpu although with different local rates. Specifically the rates of useDb are

expressed as ratios, i.e., d1 and d2, of the rates of useCpu. If d1 < 1 then the behaviour

of C1 is such that it requires longer data-bound activities. Conversely, if d2 > 1 then C2

carries out longer (i.e., slower) CPU-bound operations. The states UseCpu and UseDb of

the two classes of components are synchronisation points with the following two-state

server components

ξ8 Cpu :Execute
def= (useCpu,c).Cpu :Log

ξ9 Cpu :Log
def= (log, lc).Cpu :Execute

ξ10 Db :Execute
def= (useDb,d).Db :Log

ξ11 Db :Log
def= (log, ld).Db :Execute

The action type log represents a synchronising activity with the component

ξ12 Logger :Log
def= (log, l).Logger :Log

The resource-sharing nature of this activity is captured by the composition

(Cpu :Execute ‖ Db :Execute) BC
{log}

Logger :Log (5.28)

Finally, the description of the whole system under study combines (5.28) with the user

components

System
def= (C1 :Think[NC1 ] ‖ C2 :Think[NC2 ])

BC
{useCpu,useDb}

(
(Cpu :Execute[NC] ‖ Db :Execute[ND])

BC
{log}

Logger :Log[NL]
)

(5.29)

The densities used for this validation were of the form (A,0,0,0,B,0,0,C,0,D,0,E),

where A,B,C,D,E were chosen randomly in {1,2,3}. As in Section 5.6.2, the rate

values were drawn from uniform distributions in [0.1,50]. The ratios d1 and d2 were

drawn from uniform distributions in [0,1] and [1,10], respectively. The following reward
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functions were used for the validation:

T huseCpu(ω) = min(c1ω2 + c2ω6,cω8)

CUCpu(ω) =
min(c1ω2 + c2ω6,cω8)+ lcω9

cω8 + lcω9

T huseDb(ω) = min(d1c1ω3 +d2c2ω7,dω10)

CUDb(ω) =
min(d1c1ω3 +d2c2ω7,dω10)+ ldω11

dω10 + ldω11

LC1(ω) = ω2 +ω3

λC1(ω) = (1−p)t1ω1 + t′1ω4

LC2(ω) = ω6 +ω7

λC2(ω) = t2ω5

(5.30)

where Ci = {Ci :UseCpu,Ci :UseDb} , i = 1,2. LC1 and λC1 (respectively, LC2 and λC2) are

combined as in (5.25) for the calculation of the average response time WC1 (respectively,

WC2). The throughput measures refer to the aggregate throughput of the actions useCpu

and useDb, but similar results could be obtained by considering the location-aware

throughputs of the two distinct classes of users.

This model is computationally more demanding than Example 1. Table 5.4 shows

the size of the state space for different configurations, suggesting that the analytical

solution of the CTMC with scale factors n = 10 and n = 50, as conducted in the previous

model, is impractical. For these factors, the CTMC was solved by simulation, using the

approach described in [24]. Each model instance was simulated until the confidence

interval of the equilibrium distribution dropped below 5% of the statistical mean. The

accuracy of this simulation set-up was assessed by computing the approximation errors

of the performance indices with both the simulated results and the numerical solutions

of the CTMC for the equilibrium distribution, for scale factors n = 1, n = 2, and n = 3.

(The largest CTMC has 1210000 states and is obtained for A = B = C = D = E = 3

and n = 3.) The comparison between the approximation errors computed with the

simulated results and those obtained by numerical solution, reported in Tables 5.5 and

5.6, show good agreement, although stochastic simulation generally overestimates the

error.

These results also confirm the behaviour observed in the validation of Example 1,

as the error decreases with larger scale factors. This is further supported by the calcu-

lation of the approximation errors (using stochastic simulation only) for scale factors

n = 10, n = 20, and n = 50, as shown in Tables 5.7 and 5.8, which show very good

accuracy for a large fraction of model instances at n = 50. The nature of the approxi-

mation is examined in more detail in Fig. 5.7, which plots the error of T huseCpu for all

tests, tracking the three worst model instances for each scale factor. Perhaps unsur-
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Table 5.4: State space sizes for some configurations of (5.29)

NC1 NC2 ND NC NL Size

1 1 1 1 1 48

2 2 1 1 1 240

2 2 2 2 2 540

3 3 3 3 3 3200

5 5 5 5 5 42236

8 8 8 8 8 601425

10 8 8 8 8 1042470

prisingly, it can be observed that the rate of convergence is dependent on the model’s

parameter configuration. Instances 111, 155, and 190 (i.e., the three worst cases for

n = 10) converge more rapidly than instances 109, 174, and 176 (i.e., the three worst

cases for n = 50). Analogous behaviour is observed for the other performance indices,

e.g. T huseDb, shown in Fig. 5.8. The fact that the three worst instances for T huseDb

are different from those for T huseCpu also reveals that a single model instance presents

varying degrees of sensitivity with respect to the performance metrics, i.e., the rate of

convergence is affected by both the model parameters and the structure of the reward

function.

Finally, it is interesting to note that although the average approximation error de-

creases with increasing scale factors, a significant fraction of model instances exhibit

the opposite behaviour, i.e., the approximation error at a scale factor ni may be greater

than the error at n j when ni > n j. This is clearly shown in Fig. 5.9, in which the in-

stances are arranged by decreasing approximation error at n = 10.

5.7 Discussion

The main objective of this chapter was the development of a framework in which a

Markovian reward structure may be related to some (real) function of the chain’s fluid

limit. Under mild conditions on the structure of the reward, two results of convergence

demonstrate that the approximation is sound asymptotically. This framework has been

applied to PEPA for the definition of three important performance indices: throughput,

utilisation, and average response time. Interestingly, these indices are defined as func-

tions of process algebra terms, and their interpretations as Markovian reward and real

functions of the fluid limit are directly inferred from the operational semantics of the
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Table 5.5: Comparison between the approximation errors of the performance indices in (5.30)

computed with numerical solution of the CTMC (columns labelled with NUM) and stochastic

simulation (columns labelled with SIM)

Performance index
n = 1 n = 2 n = 3

NUM SIM NUM SIM NUM SIM

T huseCpu 11.96% 12.35% 5.95% 6.15% 3.99% 4.40%

T huseDb 15.20% 15.71% 7.41% 7.73% 4.85% 5.78%

CUCpu 14.81% 14.83% 9.38% 9.36% 7.01% 7.00%

CUDb 21.36% 21.39% 12.70% 12.83% 9.25% 9.39%

WC1 32.66% 32.52% 20.00% 19.90% 14.45% 14.79%

WC2 23.67% 23.70% 14.83% 15.02% 11.06% 11.33%

language. Owing to the formality of the language, these results of convergence are not

tied to a particular PEPA model, but they hold in general.

The quality of the agreement between the Markovian reward and the correspond-

ing deterministic estimate for finite scale factors depends on the structure of the model.

The simple model of Example 1 shows excellent approximation at n = 50, where all

randomly generated instances have a percentage relative error less than 5%. This is

obtained by analysing small-sized CTMCs (i.e., no larger than 63000 states), which

gives confidence on the accuracy for larger population levels. Similar results are ob-

served for the model in Section 5.6.3, which shows a much more severe state-space

explosion problem. A comparison between the results from simulation and those from

the numerical solution of the CTMC confirms that the stochastic simulation approach

adopted for the validation of this model is accurate.

Unfortunately, theoretical bounds such as those discussed in Section 4.5.2 do not

apply to the performance indices discussed in this chapter because functions of Markov

chains do not in generally enjoy the Markov property [85,98]. However, the numerical

results presented here confirm the validity of ODE analysis for the estimation of indices

of performance. Importantly, this kind of analysis is possible at a very low computa-

tional effort: for the model in Section 5.6.3 at n = 3, the average execution time for

the analysis of the ODE model was 0.35s on an ordinary desktop machine, as opposed

to over 13s required for the numerical solution of the CTMC and the calculation of the

reward. One should expect longer execution times for the evaluation of the transient

probability distribution over a large time interval, and dramatic growth on memory and
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Table 5.6: Number of model instances with approximation error less than 5%, computed using

the numerical solution of the CTMC for the equilibrium distribution (columns labelled with NUM)

and stochastic simulation (columns labelled with SIM)

T huseCpu T huseDb CUCpu CUDb WC1 WC2

n NUM SIM NUM SIM NUM SIM NUM SIM NUM SIM NUM SIM

1 79 78 66 63 76 78 55 54 52 46 46 48

2 119 122 105 103 109 110 80 80 84 84 80 80

3 145 140 137 130 123 121 106 102 97 96 97 94

Table 5.7: Approximation errors of the performance indices in (5.30). The Markovian rewards

are computed by stochastic simulation

n T huseCpu T huseDb CUCpu CUDb WC1 WC2

10 1.78% 2.57% 2.62% 3.59% 5.06% 5.27%

20 1.45% 2.35% 1.59% 2.31% 3.06% 3.55%

50 1.16% 1.78% 0.91% 1.30% 2.16% 2.25%

time requirements for the analysis of larger CTMCs. Alternatively, resorting to stochas-

tic simulation leads to a drastic reduction of memory footprint, though this is offset by

heavier time requirements to obtain a statistically significant number of samples. In-

deed, the average execution time for the simulation and the calculation of performance

indices of a model instance in Section 5.6.3 was about 2000s, i.e., about five orders of

magnitude slower than the deterministic evaluation.

The extraction of fluid performance measures from PEPA has been considered in [25],

where the authors introduce a slight variant to the language in order to be able to ex-

Table 5.8: Number of model instances with approximation error less than 5%. The Markovian

rewards are computed by stochastic simulation

n T huseCpu T huseDb CUCpu CUDb WC1 WC2

10 177 168 165 159 146 150

20 188 171 183 171 173 164

50 196 183 196 189 179 178
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(b) Scale factor n = 20

0 50 100 150 200
0

5

10

15

Experiment Number

P
er

ce
nt

ag
e 

R
el

at
iv

e 
E

rr
or

 ←109

 ←174 ←176
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Figure 5.7: Validation of T huseCpu

press time-to-absorption measures. The comparison against the corresponding stochas-

tic analysis is only empirical and does not make use of properties of convergence be-

tween the two interpretations. By contrast, the throughput and average response-time

calculations presented in [45] and [43] can be shown to be embodied in the present

framework.
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(b) T huseDb
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(c) CUCpu
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(d) CUDb
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(e) WC1
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Figure 5.9: Experiments ordered by decreasing approximation error at n = 10 (solid line). A

percentage of model instances shows greater approximation errors with increasing scale factors





Chapter 6

Relating Layered Queueing Networks

and PEPA

As discussed in Chapter 2, one of the major advantages in using queueing models is the

availability of computationally efficient and scalable solution methods based on mean-

value analysis (MVA) for the evaluation of performance indices such as throughput,

utilisation and response time of hardware/software systems. In the paper by Herzog

and Rolia [90], this is related to the features of stochastic process algebras. The two

modelling techniques are presented as achieving orthogonal goals. Despite the compu-

tational advantage, queueing networks require a somewhat fixed level of abstraction

because the system is expressed at the level of processing resources and users that

queue for service. On the other hand, the small yet powerful set of primitives of pro-

cess algebras may capture the typical behaviour of software systems more naturally. For

example, a unit of computation may be associated with a prefix, conditional branching

may be represented by the choice operator, looping may be obtained by recursion, and

passing the locus of control may be indicated with cooperation. At the cost of a typ-

ically more expensive computation, process algebra models may yield a very accurate

and detailed representation of the system under study, and the range of quantitative

and qualitative characteristics is usually wider.

In light of the theoretical developments presented in the previous chapters of this

thesis, the relationship between process algebras and queueing models may be con-

sidered from a different perspective. The interpretation of a PEPA model against the

deterministic differential semantics aims at achieving efficiency improvements analo-

gously to the use of MVA methods in queueing networks. It is therefore of interest to

examine whether a process-algebraic interpretation of a model using the same level

of abstraction as a queueing network yields benefits with regard to the efficiency and

the accuracy of the quantitative analysis. Specifically, this chapter relates PEPA to the

81
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Layered Queueing Network (LQN) model. The LQN semantics of layered multi-class

servers, resource contention, multiplicity of threads and processors are given an inter-

pretation in terms of components of a PEPA model in such a way that the benefits of the

deterministic approximation are best exploited—i.e., independent replicas of the same

LQN entity are represented as independent copies of the same sequential components.

The soundness of the translation is validated through a case study of a distributed

computer system and the numerical results are used to discuss the relative strengths

and weaknesses of the different forms of analysis available in both approaches, i.e.,

simulation, MVA, and differential approximation.

Section 6.1 gives an overview of the LQN model. Section 6.2 presents a methodol-

ogy for mapping LQN elements into PEPA processes, covering many important features

such as multiplicity of classes of servers, multithreaded and multiprocessor compu-

tation, synchronicity of service requests, and the fork/join paradigm for concurrent

behaviour. It also discusses how to obtain corresponding indices in the PEPA model

for utilisation and average response time. The overall methodology—which is general

and thus can be implemented for automatic translations—is practically applied to a

case study of a distributed system. In Section 6.3, this model is used to validate the

translation and compare all forms of analysis available for the two techniques on the

basis of accuracy, computational cost, and richness of the result set. Finally, concluding

remarks are presented in Section 6.4.

6.1 Overview of Layered Queueing Networks

This section gives an informal overview of the LQN model by means of a running ex-

ample. The reader is referred to [68] (and the rich bibliography therein) for a more

detailed treatment. Figure 6.1 shows a LQN of a distributed application which fea-

tures all of the elements considered in this chapter. Servers (called tasks) are drawn

as stacked parallelograms and their multiplicity is indicated within angular brackets

alongside the task’s name. For instance, File Server<1> denotes one single thread of

execution for the file server. A task is deployed onto a processor, depicted as a circle

connected to the task. Concurrency levels for processors are denoted similarly to tasks.

Distinct kinds of services (called entries) exposed by a task are represented by small

parallelograms drawn inside the task. Each entry is associated with an execution graph

consisting of atomic units of computation called activities, drawn as rectangles. Ac-

tivities are arranged through operators for sequencing (directed arrows), conditional

branching/merging (small circle with the + symbol) and fork/join synchronisation

(small circle with the & symbol). Each activity is characterised by a service time
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Figure 6.1: LQN model of a distributed application.
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demand on the processor with which the task is associated, indicated within square

brackets. For the sake of graphical convenience, execution graphs which consist of a

single activity are not explicitly drawn, and the activity’s execution demand is directly

shown within the associated entry. In Figure 6.1 only the execution graphs of entry

visit and buy are drawn. The former models an activity which accesses some cached

information, after which it performs an internal activity with probability 0.95, or a

more expensive external activity with probability 0.05. In the entry buy, after prepare

is performed the two activities packaging and shipping are executed in parallel. When

they both finish, display is executed.

Layering of services is modelled by means of requests made from an activity to an

entry in another task in the network. Requests are indicated by directed arrows and

may be of two kinds: synchronous, with closed arrowheads, and asynchronous, with

open arrowheads. Each request is labelled with a number between parentheses, which

gives the number of requests per execution. This can be interpreted deterministically

or as the mean of a geometric distribution. The total number of requests performed by

an activity determines the distribution of its execution demand. The total demand is

divided into slices whose duration is drawn from independent exponential distributions

with mean equal to the ratio between total execution demand and total number of

requests. The execution of one slice is interposed between successive requests to other

entries. Reference tasks are tasks which do not accept requests and they are used to

model system workload.

For entries which accept synchronous requests, their overall behaviour may be sub-

divided into two phases. The first phase models the computation carried out from the

receipt of the request until the reply to the caller. Such a reply is denoted as a dashed

arrow pointing to the activity’s entry. All the activities in the execution graph that

follow the replying entry are part of the second phase, indicating an autonomous con-

tinuation during which the caller is not blocked. Execution graphs consisting of two

activities such that each represents the behaviour of one phase can be conveniently

drawn in a compact form, as illustrated by write in Figure 6.1. The execution demand

for each phase is drawn inside the entry within square brackets. The requests from

multi-phase entries are labelled with pairs, in which the i-th element represents the

number of requests made by the activity in the i-th phase.

6.2 PEPA Interpretation of LQNs

The main rationale behind the PEPA interpretation of LQNs presented in this section

is to exploit the inherent concurrent behaviour of replicated tasks and processors, and
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Table 6.1: Summary of notation.

Symbol Meaning Variables

A Set of LQN activities a

E Set of LQN entries e

K Synchronicity type. K = {sync,async} k

P Set of LQN processors p

T Set of LQN tasks t

act(p) : P → 2A Set of activities executed on p

act−1(a) : A → P Process on which a is executed

dem(a) : A → R≥0 Total execution demand of activity a

ent(t) : T → 2E Set of entries in task t

mpr(p) : P → N Multiplicity of processor p

mtk(t) : T → N Multiplicity of task t

rep(a) : A → E The entry to which activity a replies (may be /0)

req(a) : A → 2E×N×K Set of requests made by activity a (e,n,k)

N(a) = ∑(e,n,k)∈req(a) n Total number of requests made during activity a

model those as copies of identical sequential components in the process-algebra model.

Thus, if T is the sequential component which describes the behaviour of a task thread,

then the whole server is described as T[N], where N is the multiplicity of the server

in the LQN model. The empty cooperation set between two copies of the same com-

ponent represents a reasonable assumption of independence between the behaviour of

two distinct threads of execution. Analogously, two distinct copies of the same proces-

sor will be assumed to behave independently from each other. Clearly, the main benefit

in using this form of replication of behaviour is that the model has a convenient NVF

representation, and, when interpreted against the population-based semantics, the size

and structure of the underlying differential equation is not dependent upon the ac-

tual population levels of the system. The interpretation of each LQN element is now

discussed in more detail. Table 6.1 summarises the notation used in this section.

6.2.1 Processor

The template for the translation of a single processor p is illustrated in Figure 6.2,

showing a cyclic two-state sequential component. The first state Procp models an activ-

ity which grants exclusive access to the processor. The rate ν for this action is assumed
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Procp
def= (acquirep,ν).Execp

Execp
def= ∑

a∈act(p):dem(a)>0

(
a,(N(a)+1)/dem(a)

)
.Procp

Figure 6.2: Translation of an LQN Processor.

PFileServer′
def= (acquirepfs,ν).PFileServer′′

PFileServer′′
def= (read,1/0.01).PFileServer′

+(write1,1/0.001).PFileServer′

+(write2,3/0.04).PFileServer′

+(get,1/0.01).PFileServer′

+(update,1/0.01).PFileServer′

Figure 6.3: Translation of PFileServer.

to be much faster than any other activity in the system. The impact of this rate on the

performance results will be examined in Section 6.3.1.

The second state Execp enables all the actions corresponding to the activities which

are executed on p, by means of the choice operator. Each activity phase is mapped onto

a distinct action type in PEPA and the rate of execution reflects the fragmentation of the

computation into slices. For any activity a, the rate of execution of a slice is denoted by

s(a) and it is equal to (cfr. process Execp in Figure 6.2):

s(a) =

{
(N(a)+1)/dem(a) if dem(a) > 0

0 if dem(a) = 0

Notice that this interpretation produces a concise description for a processor, whose

number of sequential components does not depend upon the distinct classes of service

enabled. For example, the translation of a PFileServer is shown in Figure 6.3. The

activity rate 3/0.04 for write2 is determined as the total number of computation slices

(i.e., 3, because the corresponding entry makes two external requests) divided by the

total execution demand, i.e., 0.04 time units.

6.2.2 Activity and Request

An LQN activity subsumes a sequence of PEPA prefixes, whose length is determined

by the number of outgoing requests and their synchronicity. A synchronous call is
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Acta
1

def= Acqa.Acta
2

Acta
i+1

def=


Synca,ei . · · · .Synca,ei︸ ︷︷ ︸

ni

.Acta
i+2 if ki = sync

Asynca,ei . · · · .Asynca,ei︸ ︷︷ ︸
ni

.Acta
i+2 if ki = async

(ei,ni,ki) ∈ req(a), for all 1≤ i < |req(a)|

CASE rep(a) = /0:

Acta
|req(a)|+2

def= Enda

CASE rep(a) 6= /0:

Acta
|req(a)|+2

def= ∑

{
(replya′,rep(a),ν).Enda|∃(e,n,k) ∈ req(a′) : e = rep(a),∀a′ ∈ A

}

Figure 6.4: Translation of an LQN Activity.

modelled with a sequence of two prefixes which model the request and the reply. The

PEPA action type for the request has the form requesta,e, where a is the activity from

which the request originates and e is the entry called by a. Similarly, the action type for

the reply has the form replya,e. An asynchronous call is represented with a single prefix

of type requesta,e.

The PEPA process corresponding to the LQN activity interposes executions of slices

of a between requests. The rates for requests and replies are here set to ν, i.e., it is

assumed that the delay for message exchange is negligible with respect to the execution

demands on the processors. With respect to the LQN interpretation, this means that

the rate of transition of jobs between queues is very fast (although not instantaneous

as per the classical assumption in queueing networks). The following snippets of PEPA

descriptions will be useful for the translation of an activity:

Acqa ≡


(

acquireact−1(a),ν
)

.(a,s(a)) if s(a) > 0

ε if s(a) = 0

Synca,e ≡ (requesta,e,ν) .(replya,e,ν) .Acqa

Asynca,e ≡ (requesta,e,ν) .Acqa

where Acqa models the access to a processor and the execution of a slice of activity a. It

is an empty string ε if the activity has no execution demand (with the usual properties

of concatenations of empty strings with arbitrary PEPA definitions). Synca,e and Asynca,e

model the sequences of prefixes for synchronous and asynchronous requests (followed

by slice executions), respectively.
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FIRST PHASE

Write′1
def= (acquirepfs,ν).(write1,1/0.001).Write′2

Write′2
def= (replysave,write,ν).EndWrite′

SECOND PHASE

Write′′1
def= (acquirepfs,ν).(write2,3/0.04).Write′′2

Write′′2
def= (requestwrite2,get,ν).(replywrite2,get,ν).(acquirepfs,ν).(write2,3/0.04).Write′′3

Write′′3
def= (requestwrite2,update,ν).(replywrite2,update,ν).(acquirepfs,ν).(write2,3/0.04).EndWrite′′

Figure 6.5: Translation of activity write.

The translation of an LQN activity is shown in Figure 6.4. The first process definition

Acta
1 models the first slice execution. If the activity replies to a synchronous request then

the last constant models the replies. The corresponding action types are given by all

LQN activities which make requests to the entry in which a is executed. The constant

Enda is left unspecified and it is defined according to the structure of the LQN, as

discussed in Section 6.2.3. As a concrete application, the translation of write is given

in Figure 6.5. Recalling the semantics of implicit activity invocation, write represents

two distinct activities, here denoted by write1 and write2. Activity write1 does not

make requests to the lower-level server but it replies to requests to entry write made

by get. Activity write2 is the autonomous continuation which makes two synchronous

requests to the entries get and update of task Backup.

6.2.3 Execution Graph

The interpretation of execution graphs follows the rationale behind the translation of

UML activity diagrams into PEPA models presented in [146]. (The reader is referred to

that paper for a detailed algorithmic description.) This section presents a conceptual

view of the approach, focussing on the main differences with respect to the original

work. The analogue of a UML action node in the LQN context is an activity, which rep-

resents the atomic unit of computation in an execution graph. However, while an action

node is translated into a single PEPA prefix, an activity is translated into a sequential

component with several local derivatives. Nevertheless, the two representations have

in common that they exhibit some form of sequential computation. For the purposes of

the translation, this sequential behaviour may be collectively summarised by the two

PEPA constants that define the initial and the final state (i.e., Acta
1 and Enda in the LQN

model). Such definitions are modified in order to combine distinct activities according
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to the semantics of the execution graph.

For activity/execution graphs, the translation algorithm identifies a number of con-

current control flows. Flows are created by means of fork nodes (called And-Forks in

the LQN model). For each entry there will be at least one flow, called the main flow,

which executes the initial activity of the entry’s execution graph. The overall model of

an execution graph can be written in the form Main BC
L

S, where S is an arbitrary PEPA

process consisting of the sequential components which model the remaining control

flows, called secondary flows.

Precedence

The operator of precedence models the behaviour of one activity being executed after

the previous one terminates. It is visually represented by directed arrows connecting

two elements of the graph and it can also be implicitly defined by second-phase entries.

The notion of precedence in PEPA is represented by letting the final state of the preced-

ing element coincide with the initial state of the subsequent one. For instance, the two

phases of the entry write—represented in Figure 6.5 as two unrelated sequential com-

ponents with no notion of precedence relationship—are transformed into a sequence

of activities by letting EndWrite′
def= Write′′1 (recall that EndWrite′ was left intentionally

unspecified for this purpose).

Probabilistic Branching

The translation of probabilistic branching (called Or-fork in the LQN model) involves

manipulating all of the activities enabled in the final state of its predecessor and re-

trieving the information about the constant names which define the initial states of all

the successors of the node. According to the template for a basic activity in Figure 6.4,

cache is translated into a sequential component in the simple form

Cache1
def= (acquireps,ν).(cache,1/0.001).EndCache.

Being the predecessor of a branching operator, its last activity cache is replaced with a

PEPA choice as follows:

(cache,1/0.001).EndCache→

(cache,0.95×1/0.001).Internal1

+(cache,0.05×1/0.001).External1

This component is capable of performing the activity cache at the original rate 1/0.001

(obtained as the sum of the two alternative behaviours), but with probability 0.95 and

0.05 it then behaves as one of its successors, i.e., Internal1 and External1, respectively.
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Alternative behaviours may merge back into one (Or-join operator). This is trans-

lated in PEPA by letting all of the final states of the merging elements coincide with

the initial state of the merged behaviour. Or-join nodes are not used in the running

example.

Fork/Join Synchronisation

The presence of a fork/join synchronisation mechanism implies that an entry has ex-

plicit concurrent behaviour. This is captured in PEPA by assigning a sequential com-

ponent to each distinct concurrent control flow. Such flows perform the activities au-

tonomously and synchronise over action types corresponding to fork and join nodes in

the execution graph. A basic activity is uniquely assigned to one flow and the algorithm

keeps track of the initial state of all flows. This is necessary to define the constituting

sequential components in a cyclic manner. The initial activity of an entry’s execution

graph is said to start the main control flow of the entry. All subsequent activities are

executed within the same control flow as is the case for the entry visit. Conversely, the

entry buy has three control flows. In addition to the main one started by prepare, two

further are spawned by the fork operator. Their initial states are Prepare1, Pack1, and

Ship1, respectively defined as follows:

Prepare1
def= (acquireps,ν).(prepare,1/0.01).EndPrepare

Pack1
def= (acquireps,ν).(pack,1/0.03).EndPack

Ship1
def= (acquireps,ν).(ship,1/0.01).EndShip

As with probabilistic branching, the translation of a fork operator takes as input the

set of activities enabled by the final state of the incoming flow and the set of initial

states of the spawned flows. Each activity in the former set is prefixed with a fork

activity, carried out at rate ν, indicating a negligible rate of spawning new processes.

Each state in the latter set is instead modified so as to have fork as the first enabled

activity. For instance, the PEPA component corresponding to the basic activity prepare

is modified to become

Prepare1
def= (acquireps,ν).(prepare,1/0.01).ForkPrepare

ForkPrepare
def= (fork1,ν).EndPrepare

where the subscript in the action fork1 is used to uniquely assign a type to each fork

node in the execution graph, for instance by mapping them into integers. Similarly,

Pack1 and Ship1 are prefixed with the fork1, i.e.,

Pack1
def= (fork1,ν).(acquireps,ν).(pack,1/0.03).EndPack

Ship1
def= (fork1,ν).(acquireps,ν).(ship,1/0.01).EndShip
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Figure 6.6: Activity diagram representing the behaviour of the PEPA components involved in a

LQN fork/join synchronisation

At a join, the algorithm resolves the unspecified final constants of its incoming flows,

by making them synchronise over a join activity (performed at rate ν) and subsequently

cycle back to the flows’ initial states. In the example,

EndPack
def= (join1,ν).Pack1

EndShip
def= (join1,ν).Ship1

An intuitive representation of the collective behaviour of the processes involved

in a fork/join synchronisation is shown in Figure 6.6, which presents a UML activity

diagram where each node is a PEPA derivative. The derivatives for forks and joins are

implicitly expressed by the vertical graphs in the diagram.

The translation of a join is also responsible for resolving the unspecified final con-

stant of the incoming flow at the matching fork, to capture the following semantics:

at a fork, the incoming flow of execution spawns as many flows as the number of suc-

cessors, and it is suspended until all of them have terminated; then, it behaves as the

flow corresponding to the outgoing edge at the matching join. In the example, the

component

Display1
def= (acquireps,ν).(display,1/0.001).EndDisplay

models the behaviour of the outgoing edge of the join. The unspecified constant

EndPrepare is defined as follows:

EndPrepare
def= (join1,ν).Display1

Overall Model of an Execution Graph

Finally, the complete model of an execution graph is represented as a composition of

all the flows’ sequential components, cooperating over the action types for forking and

joining. The definitions of the secondary flows are not modified any further, thus they

are instantiated with suitable replication according to the multiplicity of the task to

which the execution graph belongs. Instead, the definitions of the main flow will be

altered when translating an LQN task, during which its multiplicity will be adjusted. In
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the example, the PEPA model of the execution graph for buy is:

Prepare1 BC
L

(
Pack1[2] BC

L
Ship1[2]

)
, L = {fork1, join1}

The overall behaviour of visit, consisting of a single flow of control is simply represented

by the flow’s initial state Cache1. In the remainder, the overall model of an execution

graph will be denoted by the component Maine BC
Le

Sece, where Maine is the behaviour

of the main flow, without information on its multiplicity, and Sece comprises all the

secondary flows, with proper multiplicites. The cooperation set Le consists of fork/join

actions in which the main flow is involved throughout its execution. Under conditions

of balanced branching (i.e., each flow spawned at a fork eventually joins), only one

constant corresponding to the final behaviour of the main flow will be left unspecified—

for instance, Merge in visit, EndDisplay in Buy, and EndWrite′′ in write. For an entry e

such a constant will be denoted by Laste.

6.2.4 Task

A reference task, here denoted by t∗, has the same behaviour as its unique entry, de-

noted by e∗. Instead, a non-reference task is modelled as a PEPA process which initially

enables the activities corresponding to the invocations of all its entries, modelled as an

initial choice component. When one of these activities is chosen, the process behaves

as the initial state of the main flow of the execution graph corresponding to that entry.

Then, after all activities in that execution graph are performed, the task component

returns to its initial state in which any entry may be executed. The pattern of transfor-

mation of a task is shown in Figure 6.7. For instance, the complete translation of the

non-reference task FileServer is given in Figure 6.8. The entry read starts executing

upon the receipt of either of two messages from external or think, modelled as two

distinct prefixes in the initial choice which behave as the same component Read1 (the

actual behaviour of the entry is independent from the originator of the request).

6.2.5 Network

The complete LQN is represented by a PEPA cooperation which arranges all the com-

ponents as inferred above and introduces the concurrency levels for the entries’ main

flows and the processors. The pattern of translation is shown in Figure 6.9. The def-

inition Compt describes the overall behaviour of a multithreaded server with multiple

entries. The task behaviour Taskt (subsuming all the main flows of a task’s entries)

is instantiated with the concurrency level of the task. It is composed in parallel with

a number of other components, each collecting the behaviour of a secondary control
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REFERENCE TASK

Taskt∗
def= Maine∗

Laste∗
def= Taskt∗

NON-REFERENCE TASK

Taskt
def= ∑

{
(requesta,e,ν).Maine |∃(e,n,k) ∈ req(a) : e ∈ ent(t),∀a ∈ A

}
Laste

def= Taskt, for each e ∈ ent(t)

Figure 6.7: Translation of an LQN Task

FileServer
def= (requestexternal,read,ν).Read1

+(requestthink,read,ν).Read1

+(requestsave,write1 ,ν).Write′1

Read1
def= (acquirepfs,ν).(read,1/0.01).EndRead

EndRead
def= FileServer

Write′1
def= . . .

. . . (cfr. Figure 6.5)

EndWrite′′
def= FileServer

Figure 6.8: Translation of task FileServer

Compt
def= Taskt[mtk(t)] BĈ

L

(
Sece1

BC
/0

Sece2
BC

/0
· · · BC

/0
Sece|ent(t)|

)
where L̂ =

S|ent(t)|
i=1 Lei , for all t ∈ T

LQN
def=

(
Compt1

BĈ
M

Compt2 · · · BĈM Compt|T |

)
BC
∗(

Procp1 [mpr(p1)] BC
/0

Procp2 [mpr(p2)] BC
/0
· · ·

BC
/0

Proc|P |[mpr(p|P |)]
)
,

where, M̂ = ∗−
S

p∈P {acquirep}.

Figure 6.9: Translation of a Layered Queuing Network
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flow for each entry of the task. The cooperation sets between secondary flows of dis-

tinct entries are empty because no form of communication is possible between two

entries within the same task—an entry’s activity may only request service from another

task of the network. Conversely, Taskt is composed with all its secondary flows over a

cooperation set which includes all the fork/join action types in which the main flow of

any task’s entry is involved.

The definitions Compt are combined together using cooperation sets which can be

denoted by the same expression M̂. However, notice that the actual instantiations are

all different because of the dependence of the set ∗ upon the operands of the coopera-

tion. In fact, it is possible to show that all such sets are pairwise disjoint. Observe that,

by construction, all the acquirep action types are not contained in the sets M̂. Any pair

of components of type Compt does not exhibit the same action type for the execution of

a basic activity, since each activity belongs to only one task. The same fork/join action

type cannot be exhibited because these activities are executed within the same task, and

distinct fork/join nodes give rise to distinct action types in the PEPA model. Thus, the

only potential elements of M̂ are the action types for message exchange requesta,e and

replya,e. The fact that sets with such action types are pairwise disjoint follows immedi-

ately from the uniqueness of activity and entry names in the LQN and can be proven

by structural induction. For an arbitrary composition of three components Compt, i.e.,

Compt1
BĈ

M
Compt2

BĈ
M

Compt3 ,

component Compt1 may enable request/reply actions with subscripts (a′,e′), (a′′,e′′), . . . ,

where e′,e′′, . . . ∈ ent(t1) and a,b, . . . are basic activities. If some action with subscript

(a,e) was present in both cooperation sets then it would mean that both Compt2 and

Compt3 can perform the same basic activity a, which is a contradiction. Then, assuming

that the property holds for a cooperation among n > 3 components

Compt1
BĈ

M
Compt2

BĈ
M

Compt3
BĈ

M
· · · BĈ

M
Comptn ,

in order to prove that it holds for n+1 components

Compt1
BĈ

M
Compt2

BĈ
M

Compt3
BĈ

M
· · · BĈ

M
Comptn

BĈ
M

Comptn+1 ,

it suffices to prove that the cooperation set M̂ in position · · ·Compti
BĈ

M
Compti+1 · · · is

disjoint from the cooperation set · · ·Comptn
BĈ

M
Comptn+1 , for all 1 ≤ i ≤ n− 1. Suppose

that for some i Compti
BĈ

M
Compti+1 has some action in common with the set in Comptn

BĈ
M

Comptn+1 . This implies that the action must be a request/reply action with sub-

script (a,e), e ∈ ent(tn+1), because it belongs to the set Comptn
BĈ

M
Comptn+1 , and that

e ∈ ent(ti+1), which is a contradiction because i + 1 6= n + 1 but one entry must belong
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to only one task. This property is of crucial importance because it guarantees that at

most two distinct components Compt synchronise for message exchange.

The group of task components is finally combined with the group of processors, each

taken with its own multiplicity. Processors do not cooperate with each other because

any execution slice must be performed on a single processor. However, the cooperation

set between all task components and all processors records the fact that any task may

be deployed on any processor, but the actual processor p which executes a given activity

a will be the only one which exhibits a in its state Execp (cfr. Figure 6.2).

The complete PEPA model for the LQN in Figure 6.1 is shown in Appendix B.

6.2.6 Performance Measures

This section is concerned with relating the notion of processor utilisation and average

response time defined in the LQN model to the corresponding performance indices

available from the analysis of the PEPA model. Such metrics will be used in Section 6.3

to quantitatively assess the soundness of the translation.

Utilisation

In the LQN model, utilisation is a performance measure which indicates the mean

number of busy processors at equilibrium. Hence, it is a value between zero and the

multiplicity of a processor. More fine-grained results can be obtained by computing

the distinct contributions from each of the activities which run on the processor. In

the PEPA model, the overall utilisation for a processor p is the mean number of com-

ponents which are in state Execp (cfr. Figure 6.2). However, this information alone is

not sufficient to obtain the contributions from each of the activities. In order to do so,

given an activity a ∈ act(p), it is necessary to compute the population levels of all the

sequential components which perform execution slices of a on the processor p. Then,

the processor utilisation due to the execution of a is given as the sum across all such

population levels. If an activity has two phases, the total contribution is the sum of the

contributions of each phase. For instance, the utilisation of processor PFileServer due

to the execution of write is obtained by inspection of the sequential components in Fig-

ure 6.5. The utilisation during the first phase is obtained as the number of sequential

components which behave as (write1,1/0.001).Write′2, whereas the utilisation during the

second phase is the sum of the population levels of the following three sequential com-

ponents: (write2,3/0.04).Write′′2, (write2,3/0.04).Write′′3, and (write2,3/0.04).EndWrite′′2.

It is worth noting that the estimation of processor utilisation is directly obtainable from

the components of the state descriptor in the NVF. Hence, this calculation does not
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require the use of the reward structures discussed in Chapter 5.

Average Response Time

The LQN model provides the average response time for the execution of a task’s entry,

which denotes the overall time spent to carry out all of the basic activities of that entry,

including the time spent for requests to other servers in the network. Unlike LQN

utilisation, this metric cannot be derived directly from the NVF representation of PEPA.

However, it can be computed using the definition of average response time proposed in

Chapter 5. For instance, for the average response time for the entry visit, the following

local derivatives of the sequential component for Server are regarded as making up the

user population (cfr. Section 5.5.2):

Cache1
def= (acquireps,ν).Cache′1

Cache′1
def= (cache,0.95×1/0.001).Internal1 +(cache,0.05×1/0.001).External1

Internal1
def= (acquireps,ν).(internal,1/0.001).Internal2

External1
def= (acquireps,ν).(external,2/0.001).External2

External2
def= (requestexternal,read,ν).(replyexternal,read,ν).

(acquireps,ν).(external,2/0.001).External3

(6.1)

This sequence of actions encompasses all of the basic activities carried out during the

execution of visit, but it does not include the time spent during the transmission of the

request and the reply messages (actions requestthink,visit and replythink,visit).

6.3 Validation

The model in Figure 6.1 was used to conduct a validation study on the quality of

the translation. The notion of accuracy used throughout this section is given by the

difference between the performance measure obtained from the LQN model and the

corresponding estimate (as discussed in Section 6.2.6) from the PEPA model, according

to the following definition of percentage relative error:

Error % =
∣∣∣∣PEPA metric−LQN metric

LQN metric

∣∣∣∣×100.

This study considered all of the analysis techniques available in both formalisms,

with emphasis on the issue of scalability, i.e., the resilience of the solution methods to

increases in the size of the model under consideration. Here, scalability was studied

empirically by estimating the incremental cost (i.e., runtime) of solving models which

maintain the same topology but with increasingly large resource concurrency levels of

some of its components. The performance metrics of interest were:
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Table 6.2: Sensitivity of rate ν in the PEPA model of Figure 6.1. First row: reference values.

Other rows: relative differences with respect to first row

ν U(PServer) U(write) W (visit)

Reference values

1.2×108 1.4763 0.3848 0.00364

Relative differences

1.2×104 1.6691% 1.6691% 5.2696%

1.2×105 0.1692% 0.1692% 0.5245%

1.2×106 0.0168% 0.0168% 0.0052%

1.2×107 0.0015% 0.0015% 0.0049%

• U(PServer), the overall processor utilisation of PServer.

• U(write), the contribution of action write to the processor utilisation of PFile-

Server.

• W (visit), the average response time for the entry visit.

The results were obtained with the PEPA Eclipse Plug-in (discussed in Chapter 7)

and the Layered Queueing Network Solver software package [125]. For statistical sig-

nificance, the execution times of all analyses presented here were averaged over ten

independent runs on an ordinary desktop machine.

6.3.1 Accuracy of the Translation

The exact form of analysis of PEPA models is the numerical solution of the underlying

Markov chain, which was compared against simulation of the LQN using the method

of batch means with automatic blocking and imposing a termination condition of 1%

radius at 95% confidence intervals. These are the parameters used for the simulation

of all LQN models. Given the rapid growth of the state space of the Markov chain with

increasing population sizes, the multiplicity of tasks and processors was kept low in

this validation study. However, insight into the sensitivity of the accuracy was given

by varying the execution demands in the model, which do not have an impact on the

cardinality of the state space.

A crucial element in the PEPA model is ν, the only parameter which has no coun-

terpart in the LQN model. Because of its semantics illustrated in the previous section,
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ν is to be chosen such that the duration of the activities associated with this rate is

negligible with respect to all other activities in the system. Table 6.2 shows the results

of a sensitivity analysis conducted across an array of increasingly large values of ν. The

slowest rate considered for this analysis, i.e., 1.2× 104, is equal to twenty times the

fastest individual rate in the LQN model (i.e., one slice execution of external). The

results in the table are reported as the percentage relative differences with respect to

the performance results of the model with ν = 1.2×108. The error trends for the utilisa-

tion indices are similar and this may be due to the fact that both are linearly related to

the population levels of the system. The different behaviour for the average response

time may be due to a non-linear form “error propagation”, as it is computed as a frac-

tion of a linear function, i.e., the population levels of the users in the system, and a

generally non-linear function, as the throughput may contain minimum expressions).

Indeed, comparing the reference case with the model with ν = 1.2× 104 showed that

the numerator of the fraction had an error of about 3.6%, whereas the denominator

had an error of about 1.67%. Further analysis on the nature of this approximation

was not conducted, but the results presented in this table were used to gain confidence

that even for relatively large values of ν the accuracy is very good, with discrepancies

considerably less than one percent in most cases.

The level of precision obtained for ν = 1.2× 108 was used for the comparison be-

tween the numerical solution for the steady-state distribution of the CTMC of the PEPA

model and the stochastic simulation of the LQN model. The results are presented in

Table 6.3, which compares the two models for different execution demands and mul-

tiplicity of resources. Using the original concurrency levels, the accuracy improves by

reducing the rates of cache. This may be related to the fact that the entries of Server

have increasingly similar overall execution demands. Configurations A6 and A7, fea-

turing slightly larger population levels, present more accurate results. Overall, there is

good agreement between the two models, and despite the rather large numerical error

in some instances, their qualitative behaviour is compatible. The results show similar

error trends for the utilisation estimates U(PServer) and U(write). The accuracy for

W (visit) is consistently better, with errors less than 4% in all cases.

6.3.2 Comparison of Simulation Approaches

The evaluation of large-scale versions of this model cannot be based on explicit enu-

meration of the state space because of its exponential growth as a function of the

concurrency levels of the components. This section compares the stochastic simulation

of PEPA models against that of LQN networks. The CTMC derived from the population-

based semantics can be solved by Gillespie’s simulation algorithm [76], using an ap-
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Table 6.3: Accuracy of the translation of the LQN in Figure 6.1 (numerical solution for the equi-

librium distribution of the CTMC in PEPA vs. simulation of the LQN). (a) Model configurations.

(b) Analysis results

Configuration Id Concurrency configuration
Execution demands

dem(cache) dem(write1)

A1 Original Model 0.0001 0.0010

A2 Original Model 0.0010 0.0010

A3 Original Model 0.0100 0.0010

A4 Original Model 0.1000 0.0010

A5 Original Model 0.1000 0.0600

A6 All concurrency levels set to 2 0.0010 0.0010

A7 All concurrency levels set to 2 0.1000 0.0600

(a)

Measure
Configuration

A1 A2 A3 A4 A5 A6 A7

U
(P

Se
rv

er
)

PEPA 1.4681 1.4763 1.5561 1.8465 1.5839 1.8440 1.7267

LQN 1.3029 1.3210 1.4002 1.7484 1.5047 1.6904 1.6851

Error 12.68% 11.76% 11.13% 5.61% 5.26% 9.09% 2.47%

U
(w

ri
te

) PEPA 0.3894 0.3848 0.3462 0.1666 0.3486 0.4806 0.3801

LQN 0.3450 0.3433 0.3126 0.1572 0.3302 0.4407 0.3704

Error 12.86% 12.09% 10.75% 6.02% 5.56% 9.07% 2.60%

W
(v

is
it
) PEPA 0.00276 0.00364 0.0126 0.1021 0.1028 0.00295 0.1019

LQN 0.00283 0.00376 0.0128 0.1022 0.1027 0.00307 0.1020

Error 2.47% 3.19% 1.41% 0.01% 0.13% 3.91% 0.16%

(b)
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Table 6.4: Concurrency level configurations of the LQN model in Figure 6.1

Component
Configuration

B1 B2 B3 B4 B5

Client 2 10 50 200 1000

Server 2 2 8 20 100

FileServer 2 2 8 20 50

Backup 2 2 8 20 30

PClient 2 2 2 10 30

PServer 2 2 2 10 30

PFileServer 2 2 2 10 30

proach similar to that presented in [24]. For this study, five instances of the model in

Figure 6.1 were obtained by varying the multiplicity of tasks and processors, as listed

in Table 6.4. The simulation of the PEPA models was conducted using the same param-

eters of the LQN simulation, i.e., method of batch means terminating when the 95%

confidence levels were within 1% of the average of the observed quantities.

Table 6.5 shows the expectations of the three performance indices and the average

runtimes measured. The agreement improves with increasing population sizes, giving

approximation errors less than 5% in all instances except configuration B1. The results

confirm the correlation between the error trends of the utilisation estimates which was

observed in Table 6.3. The PEPA stochastic simulation algorithm is less sensitive to

the problem size. For instance, the largest model was about twice as costly as the

smallest one (whose population levels are about two orders of magnitude smaller),

as opposed to a corresponding increase by a factor of over 300 in the runtime of the

LQN simulation. However, in absolute terms LQN simulation was much faster than

PEPA simulation in the configurations B1 to B4, with runtimes of the same order of

magnitude only for configuration B5.

6.3.3 Comparison of Approximate Techniques

This section discusses the MVA approach for LQNs and the fluid-flow approximation of

PEPA based on ordinary differential equations. Similarly to the previous section, the

comparison considers the computational cost as well as the accuracy of these forms

of analysis using the model configurations listed in Table 6.4. The default parame-

ters of the LQN analytical solver were not satisfactory for this study, instead Conway’s
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Table 6.5: Comparison of stochastic simulation approaches

Measure
Configuration

B1 B2 B3 B4 B5
U

(P
Se

rv
er

)

PEPA 1.8437 1.8768 1.9986 9.9932 29.9792

LQN 1.6903 1.8030 1.9994 10.0000 30.0000

Error 9.07% 4.09% 0.04% 0.07% 0.07%

U
(w

ri
te

) PEPA 0.47667 0.48976 0.51989 2.60831 7.81188

LQN 0.44096 0.46979 0.52066 2.60620 7.81970

Error 8.10% 4.25% 0.15% 0.08% 0.10%

W
(v

is
it
) PEPA 0.0029626 0.0032327 0.0734965 0.028232 0.064852

LQN 0.0030678 0.0031620 0.0754888 0.027989 0.061714

Error 3.43% 2.23% 2.64% 0.87% 5.08%

(a) Performance estimates and percentage relative errors

Tool
Configuration

B1 B2 B3 B4 B5

LQN 42 s 106 s 420 s 2128 s 12864 s

PEPA 5165 s 3773 s 3757 s 8624 s 12115 s

(b) Execution times

algorithm [51] was used. Furthermore, as suggested in the user manual of the Lay-

ered Queueing Network Solver package [67], the solver option stop-on-message-loss was

turned on to deal with the asynchronous requests at Server. The differential equations

were numerically integrated using the Java implementation of the adaptive step-size

fitfh-order Dormand-Prince algorithm [61] provided by Patterson and Spiteri [119].

The algorithm was modified to detect convergence to equilibrium using the same ap-

proach discussed in Section 5.6.1: the termination condition was based on a criterion

of relative convergence, setting a threshold of 1×10−6 for the L1 norm of the difference

of the solution vectors of two successive integration steps. The initial-value problems

associated with these models were found to be stiff with respect to the values of ν.

The results presented in Table 6.6a were calculated for ν = 1.2× 104. The simulation
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Table 6.6: Comparison between MVA and differential-equation analysis (ν = 1.2×104)

Measure
Configuration

B1 B2 B3 B4 B5

U
(P

Se
rv

er
)

PE
PA Value 1.98616 1.98616 1.98616 9.93082 29.7924

Error 17.50% 10.16% 0.66% 0.69% 0.69%

LQ
N Value 1.26297 1.38183 2.36364a 9.05149 24.235

Error 25.28% 25.36% 18.54% 9.48% 19.21%

U
(w

ri
te

)

PE
PA Value 0.517693 0.517690 0.517692 2.58845 7.76536

Error 17.40% 10.20% 0.57% 0.68% 0.69%

LQ
N Value 0.329205 0.360150 0.616152 2.35928 6.31687

Error 25.34% 23.34% 15.50% 9.47% 19.22%

W
(v

is
it
) PE

PA Value 0.00391137 0.00391131 0.0840782 0.0306368 0.0662695

Error 27.50% 23.70% 11.38% 9.46% 7.38%

LQ
N Value 0.00830393 0.00975129 0.0543038 0.0120020 0.0241729

Error 170.68% 208.39% 28.06% 57.11% 60.83%

aThis is an inappropriate estimate because it exceeds the processor concurrency level, set to two. This

finding has been reported to the tool authors.

(a) Performance estimates and percentage relative errors calculated with respect to the simulation results

of the LQN shown in Table 6.5

Tool
Configuration

B1 B2 B3 B4 B5

LQN 0.26 s 0.26 s 0.62 s 2.72 s 19.96 s

PEPA 8.61 s 8.52 s 37.28 s 34.99 s 64.81 s

(b) Execution times
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Table 6.7: Evaluation of the stiffness of the fluid-flow analysis with respect to ν. Runtime compar-

isons and relative errors between the PEPA performance calculated with ν = 1.2×104 (shown

in Table 6.6a) and ν = 1.2×105

Configuration
Relative accuracy

Slow-down factor
U(PServer) U(write) W (visit)

B1 0.62% 0.62% 0.23% 7.0

B2 0.62% 0.62% 0.20% 8.0

B3 0.62% 0.62% 0.64% 7.3

B4 0.62% 0.62% 0.57% 7.8

B5 0.62% 0.62% 0.60% 8.0

of the LQN was regarded as being the true model of the system, thus the reported

percentage errors were calculated with respect to the LQN estimates reported in Ta-

ble 6.5. In these instances, fluid-flow analysis is consistently more accurate than MVA.

The error trend of the fluid-flow approximation of PEPA reflects the findings presented

in Chapter 4 and 5, i.e., the approximation behaves better as the population sizes in

the system increase. The estimates of W (visit) are not fully satisfactory in both cases,

although the analysis with PEPA gives acceptable results (within 10%) for configura-

tions B4 and B5. The computational cost of fluid-flow analysis is low and independent

from the population sizes. The different execution times reported in Table 6.6b are due

to the different lengths of the transient period in the models (indeed, in all cases the

execution time for the integration of one time unit was about 3.7 seconds). To consider

the impact of the relatively low value of ν used, fluid-flow analysis was repeated for

ν = 1.2×105. Table 6.7 reports the relative percentage accuracy and the increase in the

computational cost, measured as the ratio between the runtime for ν = 1.2×105 and the

runtime for ν = 1.2×104. This cost grows proportionally with the relative increase of ν.

However, given the negligible accuracy improvement, the model with ν = 1.2×104 may

be considered to be a better candidate in the trade-off between accuracy and solution

efficiency.

In contrast to fluid-flow analysis, the execution runtimes for MVA were dependent

upon the system size, although they were in general significantly faster than fluid-flow

analysis (between about four and thirty times for configurations B1–B4 and executing

with comparable runtime for configuration B5). According to other experiences pub-

lished in the literature [68], models with such approximation errors as those reported
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here can be considered as being problematic with respect to the applicability of MVA,

and in general one should expect more accurate results (i.e., within 5%). Nevertheless,

these slightly large approximation errors in such particularly unfavourable instances

are an adequate price to pay for the high efficiency of this solution technique.

6.4 Discussion

The interpretation of LQNs as PEPA process algebra models supports a generous subset

of the LQN model, including: synchronous and asynchronous request types, multi-

plicity of tasks and processors, two-phase activities, and execution graphs for the de-

scription of sequentiality, conditional branching, and fork/join synchronisation. Future

work will be concerned with extending this approach to other features not considered

here, such as looping in execution graphs, synchronisation based on quorum consensus

mechanisms, and forwarded replies (whereby the reply of one entry is delegated to

some other entry in the network). The interpretation of the request count parameter

corresponds to the deterministic semantics of the LQN model, i.e., the request is per-

formed exactly the number of times shown in the request label. This may be extended

to include requests with geometrical distributions. Furthermore, here all execution

demands are assumed to be distributed exponentially, although the LQN model sup-

ports activities with arbitrary variance. This extension can be included in the present

approach by using suitable phase-type distributions.

The numerical investigation suggests that the PEPA translation of LQN models of-

fers complementary rather than competing analysis techniques for the performance

evaluation of software systems. The original semantics of PEPA permits explicit enu-

meration of the complete state space of the model, enabling forms of analysis, e.g.,

model-checking, which do not require the solution of a performance model, but nev-

ertheless give insight into the qualitative behaviour of the system. In relatively small

models for which the numerical solution of the underlying Markov chain is feasible,

other indices of performance are possible beyond those considered in the LQN model.

For instance, the technology of stochastic probes for PEPA supports passage-time anal-

ysis in which complex passages over the Markov chain can be described using a rich

language based on regular expressions over the model’s process-algebraic terms [8].

As observed in Table 6.5, the rapid growth of the LQN simulation time with in-

creasing concurrency levels indicates that PEPA stochastic simulation is preferred for

the analysis of systems with many independent replicas, for which results are provided

with very good accuracy. Conversely, LQN simulation is the method of choice when the

multiplicities levels are relatively low, since the execution runtimes may be some orders



6.4. Discussion 105

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

Time

Ut
ilis

at
io

n

 

 
U(PClient)
U(PSserver)
U(PFileSystem)

Figure 6.10: Temporal evolution of the utilisation of the processors of configuration B5 over the

first two time units

of magnitude smaller. More interesting is the comparison between MVA and fluid-flow

analysis. Fluid-flow analysis behaved remarkably well in the instances analysed in Sec-

tion 6.3.3, especially in cases exhibiting components with an appreciable number of

replicas. Under these conditions, it gave sufficiently accurate estimates for the aver-

age response time W (visit) which proved otherwise difficult to approximate. Fluid-flow

analysis has stronger resilience to increases in the mutiplicity levels, since the runtime

span between configuration B1 and B5 is narrower than that observed for MVA. For

this reason it is more desirable than MVA for very large systems. In smaller models

fluid-flow analysis appears to be less advantageous because of its higher computational

cost. Nevertheless, it may be still preferred over MVA in situations where transient

measures of performance are required, as they can be extracted from the solution of

the differential equation over a finite time interval. This information can be used to

reason about different quantitative characteristics, such as warm-up periods (defined

as the time interval necessary to reach equilibrium from some initial condition) and

peak throughputs and utilisations. An example is shown in Figure 6.10, which plots

the temporal evolution of the utilisation of the processors over the first two time units

for the model configuration B5, clearly identifying PServer as the bottleneck of the

system since almost all (i.e., 29.74) of the available processors are kept busy after a

warm-up period of about 0.02 time units.





Chapter 7

Tool Support

The PEPA Eclipse Plug-in is the software toolkit for PEPA which implements the analysis

techniques presented in the previous chapters. It provides support for the modelling

process from the early stages of model development and debugging through to au-

tomating the experimentation process and culminating in visualisation of numerical

results in the form of graphs and charts [139, 141, 142, 143]. This chapter is con-

cerned with a detailed discussion of the tool, with focus on the design principles and

algorithms developed for the core functionality concerning Markovian and differential

analysis. Much effort has been devoted to addressing ease of maintainability and ac-

commodating further enhancement and reuse, as will be demonstrated by an overview

of third-party libraries and tools which have connections with the PEPA Eclipse Plug-in.

7.1 Overview

7.1.1 The Eclipse Framework

Eclipse is a software platform written primarily in Java. Initially developed by IBM, it

is now open source and is managed by the Eclipse foundation [63]. Eclipse comprises

a run-time environment (Equinox) compliant with the OSGi standard [118], based on

an extensible architecture. A plug-in is a software component that adds functionality to

Equinox. The Eclipse foundation has developed and made freely available a rich set of

plug-ins that deliver an integrated development environment (IDE) for this framework.

The IDE itself is extensible through the same plug-in mechanism; for instance, one of

the most popular plug-in projects for the Eclipse IDE is JDT [64], a powerful toolkit for

Java development. The IDE revolves around the notion of workbench, which represents

the main container of the Eclipse user interface. An Eclipse workspace contains a menu

bar, a tool bar, a status bar, and a collection of editors and views. The two latter

components are used as a presentation layer to some underlying business model. An

107
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Figure 7.1: Architecture of the PEPA Eclipse Plug-in. Beneath the human-readable component

name (in bold) is the Java namespace. The components within the rounded rectangle are

dependent upon the Eclipse platform whereas Pepato and PEPA Command Line are deployed

as standard Java packages.

editor is used to alter the underlying model of its registered types while a view presents

contextual information.

7.1.2 Architecture of the PEPA Eclipse Plug-in

The PEPA Eclipse Plug-in comprises contributions to the Eclipse platform for the de-

velopment and the analysis of PEPA performance models. Its architecture, depicted

in Fig. 7.1, is organised as a set of components which perform various PEPA-related

tasks. In the spirit of Eclipse, the PEPA Eclipse Plug-in exhibits loosely coupled intra-

and inter-component interaction, which allows for clear separation of interfaces from

their implementations and provides a robust framework for interchangeability.

The central element of the PEPA Eclipse Plug-in is Pepato, discussed in Section 7.2, a

pure Java library which exposes an application programming interface for all of the core

modelling tasks. Pepato may be accessed via a command-line interface, particularly use-

ful to reduce the memory footprint of the graphical user interface when analysing larger

models. When developing for Eclipse, it is a recommended practice to separate out core

functionality of a service and its contributions to the user interface into (at least) two

distinct plug-ins. This allows the core functionality to be used in a context in which
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the user interface is not necessary or even not available. Eclipse Core exposes Pepato to

the platform, and its main role is to provide a mapping between files managed within

Eclipse and PEPA-related objects. In particular, it is based on the Eclipse Resources

plug-in, which implements a file-system layer for the Eclipse workspace on top of the

native file system of the underlying operating system. This facilitates the management

of events related to changes in the state of workspace files. For example, listeners may

be installed on files to be notified when a file being edited is saved. Eclipse Core regis-

ters listeners for PEPA model files, which trigger the automatic execution of the PEPA

parser and the static analysis routines when the model is saved. The plug-in Common

has similar ancillary nature. It provides necessary support to the other plug-ins of the

system, encapsulating pieces of commonly-used functionality such as routines for path

manipulation, services that handle the progress of long-running tasks, and frameworks

for plotting tools. EMF Support provides a meta-model of PEPA for the Eclipse Modelling

Framework, which may be used for data interchange and meta-model transformation

within the platform [2]. The plugin Eclipse UI, discussed in Section 7.3, provides all of

the elements for the graphical user interface of the PEPA Eclipse Plug-in, including a

text editor for PEPA models and several related views for displaying analysis results.

A user manual and a developer guide are provided in HTML format through PEPA

Help, as an extension of the Eclipse Help system. This is the standard mechanism for

documenting plug-ins in Eclipse, which has two major benefits for the user: i) the

documentation for all the installed plug-ins is located in a central repository, easily

accessible from the IDE; and ii) the user interface can be enriched with hot-keys and

hyperlinks to the relevant pages.

7.2 Pepato

The class diagram in Fig. 7.2 shows the components of Pepato discussed in this section.

The main access point to the library is the facade class (cfr. [71]) PepaTools. The root

object is Model, the abstract syntax tree of a PEPA model, which can be either generated

from a text file via the method PepaTools.parse, or created directly as an in-memory

model via the programming interface. The complete document object model of PEPA

is shown in Fig. 7.3. Static analysis of the model description is available through the

method doStaticAnalysis, whose details are discussed at length in Section 7.2.2. The

support classes OptionMap and IProgressMonitor are used extensively throughout the

library. The former acts as a centralised resource for storing user-accessible settings

such as solver types and parameters whereas the latter offers an interface for controlling

long-running operations such as the exploration of the state space and the numerical
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Figure 7.2: Architecture of Pepato.
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solution of the underlying mathematical representation.

The method PepaTools.getBuilder returns an instance of IStateSpaceBuilder

which may be invoked for the explicit enumeration of the state space of the model. The

implementation Builder and its associated object MarkovianExplorer are discussed

in Section 7.2.3.3. A state-space builder returns an instance of IStateSpace, which

represents the central interface for Markovian analysis in Pepato. Steady-state analysis

of the underlying Markov chain is accessible via the method PepaTools.getSolver.

The architecture for differential analysis follows an analogous route. The method

PepaTools.getParamGraphBuilder returns an instance of IParamGraphBuilder which

is responsible for the computation of the underlying parametric derivation graph of the

PEPA model, represented by the interface IParametricDerivationGraph. The imple-

mentation ParamGraphBuilder, similar in spirit to the Markovian analogue Builder, is

discussed in Section 7.2.6. The most notable method of a parametric derivation graph

is getFunctions, which returns the list of generating functions of the model. These are

used within the method PepaTools.getODESolver to create an instance of IODESolver.

In contrast to ISolver, the solution of the differential equation returns the time-course

trajectory. Therefore, the solve method accepts an interface ICallback, which is noti-

fied of any time point computed during the numerical integration.

7.2.1 Concrete Syntax

The concrete syntax accepted by the tool is here presented by means of a running

example, which is shown in Fig. 7.4. Its main features are listed below.

• Rate declarations and action types must start with a lowercase letter. They may

contain underscores and digits.

• Process declarations must start with an uppercase letter. They may also contain

underscores and digits.

• Arithmetic expressions are supported in declarations of rates and activities. The

usual operators +, -, *, / are supported with the obvious semantics.

• The model’s system equation is implicitly given by the last unnamed declaration

in the model description. The PEPA combinator is implemented by specifying the

cooperation set between angular brackets <>.

• Comments follow the style of the C/C++ language, i.e., // followed by a line

termination character, or enclosed by /* and */.

• Arrays of processes are specified in the form Process[N], where N is a natural

number. The symmetry reduction algorithm implemented in the PEPA Eclipse
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Figure 7.3: Document object model of PEPA.

Plug-in exploits the isomorphism between these processes to construct the lumped

Markov processes. In addition, an array may have the form Process[param],

where Process is a process identifier and param is a parameter identifier which

can be evaluated to a natural. This format is to be used should the modeller

require performing sensitivity analysis over different sizes of the array.

7.2.2 Static Analysis

Static analysis is used for checking the well-formedness of a model and detecting po-

tential problems as early as possible in the modelling life cycle, particularly prior to

inferring the derivation graph of the system. Basic checks include detection of unused

declarations of rates and processes, or process identifiers which are used but never de-
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/* Parameter declarations */

p = 0.1;

q = 2.0;

r = 0.2 * q;

s = 3.0;

t = 4.0;

u = 5.0;

v = 6.0;

w = 7.0;

n cpu = 4; // Array length parameter

/* Sequential component Process */

Process1 = (think, p * q).Process2 + (think, (1 - p) * q).Process3;

Process2 = (use cpu, r).Process1;

Process3 = (use db, s).Process1;

/* Sequential component CPU */

CPU1 = (use cpu, t).CPU2;

CPU2 = (reset cpu, u).CPU1;

/* Sequential component DB */

DB1 = (use db, v).DB2;

DB2 = (reset db, w).DB1;

/* System equation */

Process1[8] <use cpu, use db> ((CPU1[n cpu] <> DB1[4]) / <reset cpu,reset db>)

Figure 7.4: Concrete syntax accepted by the PEPA Eclipse Plug-in.

fined.1 Other less straightforward static analysis is concerned with the detection of:

(i) potential local deadlocks, i.e., the inability of a sequential component to engage

in a shared activity; (ii) transient local derivatives of sequential components; and (iii)

unnecessary declarations of action types in cooperation and hiding sets. In order to

perform these checks, the model’s abstract syntax tree is iteratively walked to create

two support data structures: complete action type set and used constant set.

Definition 14 (Complete Action Type Set). The complete action type set of a PEPA com-

ponent P, denoted by act
(
P
)
, is the set of all action types which may be carried out by P

1It is worthwhile noting that rate identifiers must be declared before use. However, there is no such
rule with regard to process identifiers, so as to allow seamless description of recursive behaviour.
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during its evolution. It is recursively defined as follows:

act
(
A
)

= act
(
P
)
, if A def= P

act
(
(α,r).P

)
= {α}∪act

(
P
)

act
(
P+Q

)
= act

(
P
)
∪act

(
Q

)
act

(
P BC

L
Q

)
= act

(
P
)
∪act

(
Q

)
act

(
P/L

)
= act

(
P
)
−L

Syntactic Abbreviation Incidentally, the function act is also used to compile out the

special cooperation set <*>. For instance, P <*> Q is replaced with P <L> Q, where

L = act
(
P
)
∩act

(
Q

)
, i.e., the two processes are enforced to cooperate over all common

action types.

Definition 15 (Used Constant Set). The used constant set of a PEPA component P, de-

noted by def (P), is the set of all PEPA constants which are visited by P during its evolution.

It is recursively defined as follows:

def
(
A
)

= {A}∪def
(
P
)
, if A def= P

def
(
(α,r).P

)
= def

(
P
)

def
(
P+Q

)
= def

(
P
)
∪def

(
Q

)
def

(
P BC

L
Q

)
= def

(
P
)
∪def

(
Q

)
def

(
P/L

)
= def

(
P
)

For instance, the following sets are computed for each process definition of the

model in Fig. 7.4:

act
(
Process1

)
= act

(
Process2

)
= act

(
Process3

)
= {think,use cpu,use db}

act
(
CPU1

)
= act

(
CPU2

)
= {use cpu,reset cpu}

act
(
DB1

)
= act

(
DB2

)
= {use db,reset db}

def
(
Process1

)
= def

(
Process2

)
= def

(
Process3

)
= {Process1,Process2,Process3}

def
(
CPU1

)
= def

(
CPU2

)
= {CPU1,CPU2}

def
(
DB1

)
= def

(
DB2

)
= {DB1,DB2}

Definition 16 (Potential Local Deadlock). A component P BC
L

Q is said to have a potential

local deadlock on α ∈ L if α 6∈ act
(
P
)
∩act

(
Q

)
and α ∈ act

(
P BC

L
Q

)
.

The definition of a potential local deadlock captures a condition that may occur

when either P or Q cannot proceed because they may perform an action α ∈ L but the

synchronising partner does not exhibit α. For instance, consider (α,r).(β,s).P BC
{β}

Q,
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for any P and Q
def= (γ, t).Q. Clearly, β satisfies the condition of local deadlock and

indeed, after the left-hand side of the cooperation performs the independent action

α, (β,s).P BC
{β}

Q executes (independent) γ-actions only. The condition is not sufficient

to conclude that one cooperating process does not ever enable any transition. For

instance, let P
def= (α,r).P+(β,r).P. Now, P BC

{β}
Q has a potential local deadlock on β, but

the top-level process interleaves α- and γ-actions indefinitely. Furthermore, note that

a cooperation without potential local deadlock may lead to an actual deadlock, i.e., it

may not enable any transition, as is the case in P BC
{α,β}

Q where P
def= (α,r).(β,s).P and

Q
def= (β, t).(α,u).Q.

Definition 17 (Redundant Action). An action α ∈ L is said to be redundant in P/L if

α 6∈ act
(
P
)
. Similarly, α ∈ L is redundant in P BC

L
Q if α 6∈ act

(
P BC

L
Q

)
.

For instance, β is redundant in P/{α,β}, P
def= (α,r).P and in P BC

{α,β}
Q where Q

def=

(α,s).Q. It is interesting to note that a non-redundant action may never be enabled by

a process. For instance, consider the following model:

P1
def= (α,r).P2 +(β,s).P2

P2
def= (α,r).P1

Q1
def= (α, t).Q2

Q2
def= (α, t).Q1 +(β,u).Q1

The component P1 BC
{α,β}

Q1 only enables a α-transition to P2 BC
{α,β}

Q2, which in turn enables

another α-transition to P1 BC
{α,β}

Q1, without ever carrying out a β-action.

Transient Local Derivatives Consider the model component P1 defined as follows:

P1
def= (α,r).P2

P2
def= (β,s).P3

P3
def= (γ, t).P2

(7.1)

This system initially performs an activity of α and then alternates activities of type β

and γ. In this sense, P1 is said to be a transient local derivative. Such a situation can be

statically checked via the procedure described in Algorithm 1. The set of process iden-

tifiers T returns those which are flagged as transient local derivatives. The inequality

X 6= A in line 3 is to be intended as a lexicographical relation between the identifiers.

Hence, it is possible that the behaviour of a transient local derivative may still be ob-

served indefinitely — e.g., consider again (7.1) where P3
def= (α,r).P2. This performs

activity α at rate r without ever returning to derivative P1.
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Algorithm 1 Transient Local Derivative

1: T = /0

2: for each sequential definition A
def= P in system equation do

3: for each X ∈ def
(
A
)
,X 6= A do

4: add def
(
A
)
−def

(
X
)

to T
5: end for

6: end for

Algorithm 2 State-space exploration based on depth-first search.

1: S = {s1}
2: E = {s1}
3: while S is not empty do

4: s = S.pop()

5: T = explore(s)

6: for all t in T do

7: if not explored(t) then

8: S = S∪{t}
9: E = E ∪{t}

10: end if

11: end for

12: end while

7.2.3 State-Space Exploration

State-space exploration is at the core of most forms of analysis of PEPA models, both

qualitative and quantitative. As a by-product of the generation of the underlying CTMC,

state-space exploration also allows for deadlock detection, which fundamentally char-

acterises the dynamic behaviour of the stochastic process. The possibility of navigating

the state space by executing sample paths also constitutes a helpful debugging tool,

which may increase the confidence that the model reflects the modeller’s intended

behaviour. Moreover, this can be carried out prior to embarking upon more computa-

tionally demanding tasks such as the numerical solution of the chain. Given its crucial

importance in the modelling process, much effort has been devoted to the design of

Pepato’s state-space exploration tool. This section is concerned with two distinct ver-

sions, which provide an implementation for the original interpretation of the language’s

Markovian semantics and another based on the canonical state descriptor, which per-

mits aggregation based on the notion of isomorphism between replicated sequential

components.
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7.2.3.1 Exploration by depth-first search

Pepato explores the state space of a model by employing depth-first search according to

Algorithm 2. The initial state s1 is extracted from the model’s definition, and is used to

initialise a stack S and a set of explored states E. For each state s popped off the stack,

the set of its reachable states T is computed by applying the semantic rules of PEPA.

Finally, if a reachable state t ∈ T has not been explored, then it is pushed onto S. The

algorithm terminates when the stack S is empty.

7.2.3.2 State representation

Given the two-level grammar supported by Pepato, the cooperation structure of the

system equation is static across the entire state space, hence it needs not be recorded

in the state descriptor. This property leads to a more parsimonious representation

consisting of an array of PEPA components, whose length, here denoted by NC, is equal

to the number of sequential components declared in the system equation. Without

loss of generality, the remainder of this section assumes a system equation comprising

at least of the cooperation operator. For any model, the value of NC is determined

by visiting the binary cooperation tree representing the system equation and counting

its leaves. The correspondence between an element of the array and its location in

the cooperation tree is maintained by assuming a fixed visit policy of the tree (in the

following, this will be pre-order traversal).

For instance, the initial state s1 of the model in Fig. 7.4 is represented as follows:

s1 = [Process1,Process1,Process1,Process1,Process1,Process1,Process1,Process1,

CPU1,CPU1,CPU1,CPU1,DB1,DB1,DB1,DB1]

This process enables a transition think enabled by the leftmost sequential component

Process1, which subsequently behaves as Process2. The state descriptor of the target

process is thus

[Process2,Process1,Process1,Process1,Process1,Process1,Process1,Process1,

CPU1,CPU1,CPU1,CPU1,DB1,DB1,DB1,DB1],

in which all but the first identifier are unchanged. (Clearly, since any Process1 in s1

may perform the same action, this will give rise to eight distinct transitions consisting

of all the permutations of the sub-vector [Process2,Process1,Process1,Process1,Process1,

Process1,Process1,Process1] of the first eight coordinates of the state descriptor.)
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Notation In the remainder of this chapter the following notation will be used. A state

of the underlying Markov chain is denoted by si, 1≤ i≤ NS. (The tool supports Markov

chains of finite size, and a sufficient condition for this is given by the use of the two-

level grammar [92].) The sequential component at position j in state si will be denoted

by si, j, 1≤ j ≤ NC.

7.2.3.3 Bottom-up exploration

The rules of PEPA in the Structured Operational Semantics style can be naturally im-

plemented as a recursive algorithm. For instance, in order to determine the derivatives

of a cooperation, those of the two cooperating components need to be computed, lead-

ing to a recursion which exits when the derivative of a prefix is to be computed (i.e.,

the axiom of the semantics). In a similar fashion, the computation of apparent rates

may also be carried out recursively. This approach corresponds to a top-down visit of

the cooperation tree—from the top-level cooperation operator to the sequential com-

ponents at each leaf. However, PEPA models obtained by the two-level grammar are

such that the cooperation structure of a state—hence, the structure of the recursion

stack for its exploration—is fixed throughout the state-space exploration process. For

this reason, the two-level grammar lends itself well to an alternative sequential version

of the exploration algorithm which statically records the cooperation structure of the

model and determines the derivatives of the components in the reverse order of the re-

cursive structure. This is the approach that will be discussed in detail here. It is termed

the bottom-up exploration algorithm because the cooperation tree is visited from the

leaves (i.e., the constituting sequential components) up to the root (i.e., the top-level

cooperation denoting the system equation).

A diagram with the most relevant classes employed by the algorithm is depicted in

Fig. 7.5 (cfr. also Fig. 7.2 for a larger context). The first-step derivatives are stored

as arrays of MarkovianTransition instances, holding a reference to the action iden-

tifier, the target process and the transition rate, represented as a Java primitive type

double. Passive apparent rates are encoded as negative doubles, whose absolute val-

ues correspond to the passive weights. A MarkovianStructuralElement is an abstract

representation of an element of the cooperation structure of the system equation.

The current process to be explored associated with a structural element is manipu-

lated using the methods getState and setState. The method getDerivatives returns

the first-step derivatives of the current process associated with the structural element

(held in the field derivatives) and the apparent rates are accessed using the methods

getApparentRate and setApparentRate. PEPA’s hiding operator is not represented as

a subclass of MarkovianStructuralElement, rather a hiding set may be associated with
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Figure 7.5: Class diagram of the data structures used for the bottom-up state space deriva-

tion. The prefix Markovian is used in some class names to explicitly distinguish them from the

analogous classes used for the extraction of the differential equation model, as discussed in

Section 7.2.6

the hidden process using the hidingSet field. A leaf in the cooperation tree is repre-

sented by an instance of MarkovianComponent. A crucial piece of information held in

this class is the index of the state descriptor associated with the sequential component,

accessed via the methods getIndex and setIndex. An instance of MarkovianOperator

corresponds to a cooperation operator in the system equation and holds references to

the cooperation set and the two operands. The method compose is called to calculate

the apparent rates and the derivatives of the cooperation given the current operand

references.

Set-up The instantiation of the model’s structural elements and their ordering for

sequential computation are carried out during an initialisation phase of the algorithm,

which is also responsible for the construction of the state descriptor of the Markov

chain. The system equation is visited in a top-down pre-order manner. An instance

of MarkovianOperator is created for each cooperation node visited and pushed onto a

stack SO. A MarkovianComponent is created for each sequential component, associated

with the proper coordinate of the state descriptor via setIndex, and appended to a list

LC. When the visit terminates, the state descriptor is generated as an array of the same

size as LC, each element of which is uniquely mapped to a leaf in the system equation.

The elements of SO are popped off the stack and inserted into a list LO such that the
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first element of the list is the last visited operator during the exploration of the system

equation. Since the first operator has clearly two sequential components as its children,

it is possible to compute its derivatives and apparent rates without recursion. Similarly,

when those are calculated, the second operator of LO has the necessary information

to compute its own apparent rates and derivatives, and so on until the last operator

of LO, the top-level cooperation in the system equation, is visited. In the remainder,

the elements of LO are denoted by ok, 1 ≤ k ≤ NMO and the elements of LC by c j,

1≤ j ≤ NMC.2

The initialisation phase also operates an optimisation aimed at avoiding unneces-

sary repeated computations of the first-step derivatives and the apparent rates of the

sequential components in the system, which are usually needed several times in the

course of state-space exploration. Instead, this information is computed only once and

stored in suitable maps, denoted by R and D. The term R(S,α) gives the apparent

rate of action type α in the sequential component S, while D(S) returns the first-step

derivatives of the component. It is worthwhile pointing out that populating these maps

usually presents little computational effort with respect to the cost of exploring the en-

tire state space. Indeed, the maps are constructed by inspection of the PEPA model’s

definitions and this process does not depend upon the system equation. Conversely,

the size of the state space grows combinatorially with the number of sequential com-

ponents declared in the system equation.

Example The following example will be used to illustrate the various stages of the

bottom-up exploration algorithm. The system equation is adapted from the model in

Fig. 7.4, for simplicity consisting of fewer copies of the sequential components:

(Process1 ‖ Process1) BC
{use cpu,use db}

(CPU1 ‖ DB1)/{reset cpu,reset db} (7.2)

The initialisation phase produces three instances of MarkovianOperator. Operator o1

represents the parallel composition between the two distinct copies of Process1, which

are assigned indices 1 and 2 of the state descriptor. Operator o2 is associated with

the cooperation CPU1 ‖ DB1 (which are assigned indices 3 and 4), with a non-empty

hiding set which stores the action types reset cpu and reset db. Finally, o3 represents the

overall system equation represented by the cooperation BC
{use cpu,use db}

, and it has o1 and

o2 as its left and right child, respectively. The list of sequential components has four

elements and the corresponding state descriptor for the initial state of the system s1 is

[Process1,Process1,CPU1,DB1]. For each sequential component in the model definition,

2In this implementation, NMC = NC, i.e., the number of instances of MarkovianComponent is equal to
the number of sequential components in the system. This will not hold for the implementation of the
aggregation algorithm, as discussed in Section 7.2.3.4.
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the maps R and D are computed as follows:

R(Process1, think) = 2.0

R(Process2,use cpu) = 0.4

R(Process3,use db) = 3.0

R(CPU1,use cpu) = 4.0

R(CPU2,reset cpu) = 5.0

R(DB1,use db) = 6.0

R(DB2,reset db) = 7.0

D(Process1) = (think,0.2,Process2),(think,1.8,Process3)

D(Process2) = (use cpu,0.4,Process1)

D(Process3) = (use db,3.0,Process1)

D(CPU1) = (use cpu,4.0,CPU2)

D(CPU2) = (reset cpu,5.0,CPU1)

D(DB1) = (use db,6.0,DB2)

D(DB2) = (reset db,7.0,DB1)

(7.3)

Method explore The procedure for determining the first-step derivatives of a state

si is described in Algorithm 3. It begins with updating the state of the elements of

LC, by invoking setState on each of them. This method, illustrated in Algorithm 4,

takes as input the current state to be explored and extracts the local state at the state

descriptor coordinate associated with it. Then, it updates the internal references to

the apparent rates and the first-step derivatives using the pre-computed maps D and R.

However, the entries are modified to take account of the hiding set associated with the

component as this structural information cannot be inferred from the model’s process

definitions. (The model in (7.2) does not have hiding operators applied to sequential

components, therefore the apparent rates and derivatives are a mere copy of the entries

in D and R.) The method compose in MarkovianOperator, shown in Algorithm 5, is

the implementation of the PEPA semantic rules for cooperation.

Given the initial state of the model (7.2), o1.compose() has the effect of setting

o1.currentState to Process1 ‖ Process1. Observing that the set of hidden actions is
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Algorithm 3 explore(si)

1: for j = 1 to NMC do

2: c j.setState(si)

3: end for

4: for k = 1 to NMO do

5: ok.compose()

6: end for

7: return oNMO .getDerivatives()

empty, the following derivatives are then obtained:

o1.derivatives = (think,0.2,Process2 ‖ Process1), (lines 13–15)

(think,1.8,Process3 ‖ Process1), (lines 13–15)

(think,0.2,Process1 ‖ Process2), (lines 16–18)

(think,1.8,Process1 ‖ Process3) (lines 16–18)

In a similar fashion, o2.currentState is set to CPU1 ‖ DB1 and the following deriva-

tives are computed:

o2.derivatives = (use cpu,4.0,CPU2 ‖ DB1),(use db,6.0,CPU1 ‖ DB2)

Finally, the state transitions are obtained as the derivatives of o3. There are no deriva-

tives such that the conditions in line 7 and 16 of Algorithm 5 are verified. Conversely,

the condition in line 13 is verified for all the derivatives of o1. Therefore, observing

that the action think is not hidden, it holds that

o3.derivatives =

(think,0.2,Process2 ‖ Process1 BC
{use cpu,use db}

(CPU1 ‖ DB1)/{reset cpu,reset db}),

(think,1.8,Process3 ‖ Process1 BC
{use cpu,use db}

(CPU1 ‖ DB1)/{reset cpu,reset db})

(think,0.2,Process1 ‖ Process2 BC
{use cpu,use db}

(CPU1 ‖ DB1)/{reset cpu,reset db})

(think,1.8,Process1 ‖ Process3 BC
{use cpu,use db}

(CPU1 ‖ DB1)/{reset cpu,reset db})

Since all of the transitions involve non-shared actions, the apparent rates computed at

o1 and o2 — respectively, (think,4.0) and {(use cpu,4.0),(use db,6.0)} — are not used

during the visit of o3.
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Algorithm 4 MarkovianComponent.setState(si)

1: j = this.getIndex()

2: this.state = si, j

3: this.derivatives = /0

4: this.apparentRates = /0

5: for each (α,r,P) in D(si, j) do

6: if α ∈ this.hidingSet then

7: add (τ,r,P) to this.derivatives

8: else

9: add (α,r,P) to this.derivatives

10: end if

11: end for

12: for each α do

13: if α 6∈ this.hidingSet then

14: this.setApparentRate(α, R(si, j,α))

15: end if

16: end for

7.2.3.4 Canonical representation

As a user option, the tool features an implementation of the state-space exploration tool

based on the canonical state representation discussed in [79], exploiting the symmetry

(isomorphism) within the arrays of processes defined in a model. The standard ver-

sion discussed in Section 7.2.3.3 does not give a special meaning to such arrays, which

are simply expanded into cooperation operators over empty action sets between copies

of the same sequential component. Conversely, the implementation discussed here

treats a process array as an atomic PEPA component. In practice, this is accomplished

by considering a subclass of MarkovianComponent, called ProcessArray, which sub-

sumes an array of contiguous sequential components in the state descriptor. Instances

of ProcessArray are created during the initialisation algorithm when an Aggregation

node (cfr. Fig. 7.3) is visited. The number of contiguous sequential components rep-

resented by each instance is obtained via the method getCopies and the index of the

first sequential component in the state descriptor is obtained via getIndex. For in-

stance, the model in Fig. 7.4 would have the following configuration of instances of

MarkovianStructuralElement:

• A ProcessArray for the aggregation Process1[8], initialised with setCopies(8)

and setIndex(1)
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Algorithm 5 compose()

1: L = this.cooperationSet

2: this.setState(this.getLeft().getState() BC
L

this.getRight().getState())

3: this.derivatives = /0

4: this.apparentRates = /0

5: l = this.getLeft().getDerivatives()

6: r = this.getRight().getDerivatives()

7: for each
(
(α,a,P),(β,b,Q)

)
∈ l× r such that α = β∧α ∈ L do

8: appLeft = this.getLeft().getApparentRate(α)

9: appRight = this.getRight().getApparentRate(α)

10: rate = a
appLeft

b
appRight min(appLeft,appRight)

11: add (α,rate,P BC
L

Q) to this.derivatives

12: end for

13: for each (α,a,P) ∈ l such that α 6∈ L do

14: add (α, a, P BC
L

this.getRight().getState()) to this.derivatives

15: end for

16: for each (β,b,Q) ∈ r such that β 6∈ L do

17: add (β, b, this.getLeft().getState() BC
L

Q) to this.derivatives

18: end for

19: for each (γ,rate,P BC
L

Q) ∈ this.derivatives do

20: if γ 6∈ this.hidingSet then

21: currentRate = this.getApparentRate(γ)

22: this.setApparentRate(γ, currentRate + rate)

23: else

24: remove (γ, rate, P BC
L

Q) from this.derivatives

25: add (τ, rate, P BC
L

Q) to this.derivatives

26: end if

27: end for
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• A ProcessArray for the aggregation CPU1[4], initialised with setCopies(4) and

setIndex(9)

• A ProcessArray for the aggregation DB1[4], initialised with setCopies(4) and

setIndex(13)

Algorithm 6 shows the overridden method setState in ProcessArray, which is

used to calculate the derivatives of the canonical state descriptor. The current state

of a process array is a parallel composition of sequential components. The algorithm

assumes the availability of a function copies, which returns the multiplicity of a given

sequential component in that array (cfr., line 5). The derivatives of a process array

are inferred from the derivatives of a single sequential component (cfr., lines 2–3),

taking into account the multiplicities of such components in the array. Lines 4–15 are

concerned with creating a target process of a transition. If a sequential component S

in the array may perform a transition to state P, then the target process array will be

the same as the initial process array, but the number of copies of S is decreased by one,

and the number of copies of P is increased by the same quantity.

For instance, the current state of the process array DB1 in Fig. 7.4 is DB1 ‖ DB1 ‖
DB1 ‖DB1, and a component DB1 enables a transition (use db,v,DB2). Therefore, three

copies of DB1 (line 8) and one copy of DB2 (line 14) are added to the target process.

Crucially, line 15 sorts the cooperating sequential components of the target process

according to some lexicographical order. (In the actual implementation, ordering is

performed during the insertion of the sequential components in the target process.

Here, this step is isolated to highlight its importance in the algorithm.) For instance,

the process DB1 ‖DB2 ‖DB1 ‖DB1 would be ordered as DB1 ‖DB1 ‖DB1 ‖DB2, which

is isomorphic to the original process. Such a process is the canonical representation

of the four distinct PEPA components which would be obtained by the standard state-

space exploration algorithm, i.e.

1. DB2 ‖ DB1 ‖ DB1 ‖ DB1

2. DB1 ‖ DB2 ‖ DB1 ‖ DB1

3. DB1 ‖ DB1 ‖ DB2 ‖ DB1

4. DB1 ‖ DB1 ‖ DB1 ‖ DB2

The canonical description disregards the information on which sequential component

is involved in the transition, and only keeps track of the multiplicities of the sequen-

tial components in the array, providing a representative state for all these isomorphic

processes. Lines 16–21 update the derivative set and the apparent rates of the process
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array. Here, the transition rates of a single sequential component are multiplied by the

number of components which enable the same action.

Algorithm 6 ProcessArray.setState(si)

1: this.state = si, j ‖ si, j+1 ‖ · · · ‖ si, j+this.getCopies()−1

2: for each distinct sequential component S in c.currentState do

3: for each (α,r,P) in D(S) do

4: target = /0

5: multiplicity = copies(this.currentState, S)

6: for each distinct sequential component S′ in this.currentState do

7: if S′ = S then

8: add (multiplicity-1) S′ components to target

9: else

10: add (multiplicity) S′ components to target

11: end if

12: end for

13: targetMultiplicity = copies(this.state, P)

14: add (targetMultiplicity+1) P components to target

15: order(target)

16: if α ∈ this.hidingSet then

17: add (τ,multiplicity× r, target) to this.derivatives

18: else

19: add (α,multiplicity× r, target) to this.derivatives

20: add multiplicity× r to this.apparentRates(α)

21: end if

22: end for

23: end for

7.2.3.5 Discussion

The state-space aggregation algorithm based on the canonical representation may be

very effective, making it possible to analyse models which would be otherwise in-

tractable with the standard exploration tool. For instance, Table 7.1 compares the

state-space sizes obtained with both implementations of the model in Fig. 7.4. The

benefits from aggregation are dramatic even at such small multiplicity levels, as the

state space may be reduced by up to four orders of magnitude.

The current implementation of the aggregation algorithm is sub-optimal in that it

only aggregates replicated components cooperating over empty action sets. Further-
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Table 7.1: Standard and aggregated state-space sizes of the model in Fig. 7.4

Multiplicity levels State-space sizes

Process1 CPU1 DB1 Standard form Canonical Form

2 2 2 144 54

3 3 3 1728 160

4 4 4 20736 375

5 4 4 62208 525

6 4 4 186624 700

7 4 4 559872 900

8 4 4 1679616 1125

more, the modeller is required to explicitly express which components to aggregate via

the use of the process array operator. Therefore, the system equation

Process1[8] BC
{use cpu,use db}

(
CPU1[4] ‖ DB1[4]

)
is treated differently from the equation

Process1[8] BC
{use cpu,use db}

(
CPU1[4] ‖ DB1[2] ‖ DB1[2]

)
although the theoretical canonical representation algorithm would give rise to the same

aggregated Markov chain. For instance, the process DB1 ‖ DB1 ‖ DB2 ‖ DB2 in the

former model is represented by the following three distinct states in the latter model

1. DB1 ‖ DB1 ‖ DB2 ‖ DB2

2. DB1 ‖ DB2 ‖ DB1 ‖ DB2

3. DB2 ‖ DB2 ‖ DB1 ‖ DB1

because each process array is considered in isolation — in this case, this has the effect

of increasing the state space size to 2025 states.

Despite these limitations, the implementation is adequate for effective aggregation

in a large class of PEPA models — namely, those population models which have been

considered in previous chapters of this thesis. In these circumstances, optimal com-

paction of distinct arrays of isomorphic components, as in the example above, can be

easily spotted by the modeller in order to achieve further aggregation.
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7.2.4 Steady-State Analysis

Most of the functionality for the analysis of the underlying Markov chain is available

through the IStateSpace interface, whose principal methods are illustrated in Fig. 7.2.

Implementations of this interface define specialised data structures for holding the

derivation graph of the PEPA model. This graph has more information than is needed

for the construction of the generator matrix of the chain because it also records the

action labels for each transition. For instance, the derivation graph of the simple pro-

cess P
def= (α,r).Q+(β,s).Q will maintain one transition for each operand of the choice,

whereas the generator matrix will record a single transition to Q at rate r + s. Because

of this difference, a design requirement of the tool was that the derivation graph and

generator matrix be represented separately using loosely coupled interfaces. In the

implementation, IStateSpace adopts the Adapter design pattern to return generator

matrices (i.e., via the method getGenerator). In so doing Markov chain solvers are

not tied to a particular representation, but may ask for implementations which are

best suited to the solution technique (e.g., sparse implementation with row or column

access).

The current version of Pepato performs steady-state analysis of the Markov chain. A

lightweight adapter around the Matrix Toolkit for Java [3] provides access to the following

solution methods (as implementations of the ISolver interface):

• Gaussian elimination

• Conjugate gradient

• Conjugate gradient squared

• Biconjugate gradient

• Biconjugate gradient stabilised

• Generalised minimal residual

• Iterative refinement

• Quasi-minimal residual

7.2.5 Calculation of Markovian Rewards

Pepato is equipped with a range of routines for the calculation of common performance

metrics over the steady-state probability distribution of the underlying Markov chain.

The main components which constitute this framework are illustrated in Fig. 7.6. A

category of metrics is concerned with the probability mass of a subset of state space
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Figure 7.6: Class diagram of the Markovian rewards available in Pepato

which matches certain conditions. Pepato has the notion of filters to define such sets,

grouped into two categories: state-based and transition-based. The former are used to

specify conditions which must hold on the local states of the sequential components of

the PEPA process. The latter match states according to properties on their incoming or

outgoing transitions.

The tool supports the following state-based filters:

Local State Filter This takes as input a local state of a sequential component P, an

integer K, and a relational operator ◦ ∈ {<,≤,=,>,≥, 6=}. It returns the set of

states in which the number of sequential components in state P, denoted by #P,

satisfies the relation #P ◦K. In the sample PEPA model, a performance metric

of interest could be the probability of finding all the CPUs in their state CPU2,

representing a situation in which no computation can be processed in the system.

This can be queried by using the local state filter #CPU2 = 4.

Pattern Matching Filter A more expressive way of filtering based on local states is

available through a pattern-matching filter. For example, the expression P| ∗ |Q
matches states with three sequential components that have the first component

in state P and the third component in state Q. The wildcard operator ∗ is used to

indicate any local state in a position. The same query as above is represented by

the following expression:
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Algorithm 7 Throughput(α,Σ,π)

1: throughput = 0

2: for each si ∈ Σ do

3: for each (β,r,P) ∈ transitions(si) do

4: if β = α then

5: throughput = throughput+πi× r

6: end if

7: end for

8: end for

*|*|*|*|*|*|*|*|CPU2|CPU2|CPU2|CPU2|*|*|*|*

Unnamed State Filter Consider the definition

P
def= (α,r).(β,s).Q

The local state (β,s).Q is called unnamed because it is not defined through a

constant. The modeller may want to use unnamed local states because their

behaviour is of secondary importance for the performance analysis. This filter

returns the set of states in which all its sequential components are not in an

unnamed state.

Probability Threshold Filter This filter may be applied to match states whose steady-

state probability is above or below a given threshold.

A transition-based filter takes as input an action type and the direction of the transition

(i.e. incoming or outgoing). It filters states which have transitions of the given direction

labelled with the given action type. Both kinds of filter can be combined using boolean

operators.

Pepato has native support for the calculation of three commonly used performance

metrics: throughput, utilisation, and mean population levels. Algorithm 7 describes

how to compute the throughput of an action type α for a probability distribution π over

a state space Σ. The total rate of execution of a given action type α at one state of the

chain is multiplied by the probability of being in that state. The sum across all states

gives the average number of activities of type α which are performed in a unit of time.

This metric is accessed via the method IStateSpace.getThroughput, which returns an

array of instances of ThroughputResult, containing the throughputs for each non-silent

action type in the model.

Utilisation is associated with each sequential component of a PEPA model and gives

the fraction of its lifetime that is spent in a particular local state. Recalling the rep-
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Algorithm 8 Utilisation(Σ,π)

1: for each si ∈ Σ do

2: for 1≤ j ≤ NC do

3: U j(si, j) = U j(si, j)+πi

4: end for

5: end for

resentation discussed in Section 7.2.3.2, utilisation is calculated for each coordinate

j,1≤ j ≤ NC of the state descriptor, and it is represented as a map of sequential compo-

nents si, j to real values. Such quantities are denoted by U j(si, j) (i.e., the utilisation at

coordinate j of the sequential component si, j) in Algorithm 8, which shows the pseu-

docode for their computation. Finally, for a given sequential component si, j, the sum

of its utilisation figures across all the coordinates of the state descriptor gives the mean

population level of si, j in the system. The method IStateSpace.geUtilisation re-

turns an array of instances of UtilisationResult, containing the utilisation maps for

each sequential component. The maps are represented as arrays of LocalStateResult,

associating a local derivative with its utilisation value.

7.2.6 Differential Analysis

Being syntactically similar to the Markovian interpretation, the implementation of the

differential semantics can reuse some of the components discussed in Section 7.2.3.3.

The process of extracting the underlying differential equation from a PEPA model con-

sists of the following steps:

1. Verification of preconditions

2. Context reduction

3. Preparation of the bottom-up exploration structure

4. Exploration of the derivation graphs of all sequential components

5. Exploration of the parametric derivation graph

The initial step rejects PEPA models with passive rates, as discussed in Section 3.4

(Assumption 4). Context reduction is carried out by replacing a process array with

a single sequential component. In this respect, the implementation is coarser than

Definition 2 (in Section 4.2) because the process P[N1] ‖ P[N2] is reduced to P ‖ P in-

stead of P, thus yielding a differential equation in which a number of components of

the size of the derivation graph of P is redundant. However, such a situation can be
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easily avoided by the modeller via visual inspection of the system equation. The con-

struction of the data structures for the bottom-up exploration takes place during con-

text reduction. The class diagram in Fig. 7.7 shows that these objects are structurally

similar to their counterparts in the Markovian state-space exploration (cfr. Fig. 7.5).

The visit of a sequential component or a process array gives rise to an instance of a

ParametricComponent, whereas a ParametricOperator is constructed for each coop-

eration in the system equation. The main difference with respect to the Markovian

analysis is the treatment of rates, which are handled symbolically using the class hier-

archy under Expression, instead of being represented as real values. Symbolic rates

are built from the rates in the Markovian transitions of the sequential components.

This information is given by the map D(S) discussed in Section 7.2.3.3, which is com-

puted during the initialisation of the algorithm. The procedure for the generation of

the derivatives of a ParametricComponent is shown in Algorithm 9. Lines 12–21 are

concerned with initialising the apparent rates of the component. Similarly to a sequen-

tial component in the Markovian interpretation, these apparent rates are computed

only once and cached for repeated uses by instances of ParametricOperator using the

method getApparentRate during the entire exploration process.

The structural elements of the bottom-up exploration algorithm and the Markovian

derivation graphs of all sequential components are sufficient to generate the numerical

vector form representation. Each distinct local state of the sequential component rep-

resented by a ParametricComponent is assigned a unique coordinate in the numerical

vector form, which can be obtained via the method getCoordinate(Process). Deriva-

tives of a ParametricComponent may be calculated by retrieving the Markovian rate of

execution, wrapping it around a Rate expression, and multiplying the expression by the

coordinate which represents the sequential component. (The same procedure can be

used for the computation of apparent rates.) The treatment of a ParametricOperator

is carried out verbatim as in Algorithm 5, where all the rate manipulations are now

assumed to be symbolic. The initial state in the numerical vector form is computed

from the initial population levels recorded in ParametricComponent and Algorithms 2

and 3 are applied similarly to obtain the parametric derivation graph of the model.

The process of context reduction applied to the model in Fig. 7.4 results in the

following context for the generation of the underlying differential equation:

Process1 BC
{use cpu,use db}

(CPU1 ‖ DB1)/{reset cpu,reset db}

The following instances of ParametricStructuralElement are created:

• An instance c1 of ParametricComponent with setIndex(1) associated with Process1.

This has the effect of allocating three coordinates in the state descriptor in the
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Figure 7.7: Class diagram of the data structures for the bottom-up exploration of the parametric

derivation graph

numerical vector form, each assigned to a local derivative of Process1 (e.g., coor-

dinates 1,2, and 3 for local states Process1, Process2, and Process3, respectively).

The Markovian transitions for these local states are taken from the maps in (7.3).

• An instance c2 of ParametricComponent with setIndex(2) associated with CPU1.

The coordinates 4 and 5 are assigned to the local states CPU1 and CPU2, respec-

tively.

• An instance c3 of ParametricComponent associated with DB1. The coordinates 6

and 7 are assigned to the local states DB1 and DB2, respectively.

• An instance o1 of ParametricOperator with children c2 and c3, empty cooperation

set, and hiding set {reset cpu,reset db}, representing the right hand side of the

top-level cooperation.

• An instance o2 of ParametricOperator with children c1 and o1, with cooperation

set {use cpu,use db}, representing the system equation.
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Algorithm 9 ParametricComponent.setState(si)

1: j = this.getIndex()

2: this.state = si, j

3: this.derivatives = /0

4: for each (α,r,P) in D(si, j) do

5: parametricRate = new Multiplication(new Rate(r), this.getCoordinate(si, j) )

6: if α ∈ this.hidingSet then

7: add (τ,parametricRate,P) to this.derivatives

8: else

9: add (α,parametricRate,P) to this.derivatives

10: end if

11: end for

12: if executed for the first time then

13: this.apparentRates = /0

14: for each local state si, j′ ∈ ds(si, j) do

15: for each action type α 6∈ this.hidingSet do

16: rateExpr = new Rate(R(si, j′ ,α)

17: parametricRate = new Multiplication(rateExpr, this.getCoordinate(si, j′) )

18: add parametricRate to this.apparentRate(α)

19: end for

20: end for

21: end if

Upon calling setState on each parametric component, the following derivatives

will be available to o1 and o2:

c1.getDerivatives() = (think,0.2×ξ1,Process2),(think,1.8×ξ1,Process3)

c2.getDerivatives() = (use cpu,4.0×ξ4,CPU2)

c3.getDerivatives() = (use db,6.0×ξ6,DB2)

where ξ represents the state descriptor in the numerical vector form. Therefore, the

derivatives of o1 and o2 will be computed as follows:

o1.getDerivatives() = (use cpu,4.0×ξ4,CPU2 ‖ DB1),(use db,6.0×ξ6,CPU1 ‖ DB2)

o2.getDerivatives() = (think,0.2×ξ1,Process2 BC
{use cpu,use db}

(DB1 ‖ CPU1)/{reset cpu,reset db}),

(think,1.8×ξ1,Process3 BC
{use cpu,use db}

(DB1 ‖ CPU1)/{reset cpu,reset db})
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The derivatives of o2 are used to determine the parametric derivation graph of the

model. For instance, the transition

Process1 BC
{use cpu,use db}

(DB1 ‖ CPU1)/{reset cpu,reset db} (think,0.2×ξ1)−−−−−−−−→?

Process2 BC
{use cpu,use db}

(DB1 ‖ CPU1)/{reset cpu,reset db}

implies the generating function

ϕthink
(
ξ,(−1,+1,0,0,0,0,0)

)
= 0.2×ξ1

where the jump (−1,+1,0,0,0,0,0) may be computed via invocations of the method

getCoordinate of ParametricComponent.

Evaluation of fluid performance metrics The fluid performance metrics discussed in

Chapter 5 are implemented as realisations of the interface ICallback (cfr. Fig. 7.2).

Details on the elements of graphical user interface employed for setting the parameters

of the analysis may be found in Section 7.3.6.

7.3 The Graphical User Interface

Eclipse UI contains all the user interface contributions to the Eclipse IDE. It features an

editor, which is automatically associated by the workbench to workspace files with the

.pepa extension. The editor has syntax highlighting and supports graphical annota-

tions (markers) for problems encountered during the modelling process. Tasks to be

performed on the PEPA model being edited are shown in the top-level menu bar, and

a number of views are connected to the editor. A customisable arrangement of all the

views of interest to a PEPA modeller is provided in the PEPA perspective. The remain-

der of this section is concerned with a detailed discussion of the views and the actions

available under the Eclipse UI plug-in.

7.3.1 Contributions to Other Plug-ins

The Navigator view is used to navigate the Eclipse workspace. Workspace files with the

.pepa extension are associated with the PEPA synchronisation icon in the editor and

registered with the PEPA editor. The Problems view is populated automatically with

syntax error and static analysis messages. The plug-in defines two levels of severity: a

warning allows the user to continue the analysis, whereas an error must be fixed. The

Console view provides verbose information on the status of a PEPA model. In particular,

it displays execution times of the various stages of analysis and provides hyperlinks
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Figure 7.8: The PEPA Eclipse Plug-in at a glance. This screen-shot shows an instance of the

Eclipse 3.3 IDE running on Mac OS X. The top-middle area shows an editor for the PEPA model

in Fig. 7.4. The description contains a deliberate unused definition (rate n cpu), underlined in

the editor area and reported as a problem in the Problems view (bottom-right area). The left

area is occupied by the Navigator view (the edited model is highlighted). The model has been

parsed, as reported in the Console view in the top-right area

which open the related views. These views are shown together with an instance of the

PEPA editor in Fig. 7.8.

7.3.2 Abstract Syntax Tree View

The Abstract Syntax Tree view (see Fig. 7.9) is connected to the active PEPA editor in the

workspace and shows a tree-based graphical representation of the abstract syntax tree

of the PEPA model, along with the source code location information as gathered during

the scanning and the parsing of the document. It mainly serves debugging purposes

and is particularly useful for developers who wish to manipulate PEPA abstract syntax

trees programmatically.

7.3.3 State-Space View

The State Space view (see Fig. 7.12) is linked to the active PEPA editor and provides

a tabular representation of the state space of the underlying Markov chain. The table
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Figure 7.9: Abstract Syntax Tree view. The node corresponding to the first process definition in

Fig. 7.8 is highlighted. It defines a choice whose left-hand side component is a prefix, whose

action type is think. The target of this activity is the process Process2. Each node is labelled

with source-code location information between brackets (line number and index of the initial

character corresponding to the node)

is populated automatically when the state space exploration is invoked from the cor-

responding top-level menu item. A row represents a state of the Markov chain, each

cell in the table showing the local state of a sequential component, using the state

representation discussed in Section 7.2.3.2. A further column displays the steady-state

probability distribution if one is available. A toolbar menu item provides access to the

user interface for managing state space filters. When a set of filter rules is activated,

the excluded states are removed from the table. The probability mass of the states that

match the filters is automatically computed and shown in the view (see Fig. 7.11). Fil-

ter rules are assigned names and made persistent across workspace sessions. From the

toolbar the user can invoke a wizard dialogue box to export the transition system and

one to import the steady-state probability distribution as computed by external tools.

The view also has a Single-step Navigator, a tool for navigating the transition system

of the Markov chain. It can be opened from any state of the chain and its layout is as

follows. In an external window are displayed the state description of the current state

and two tables. The tables show the set of states for which there is a transition to or
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Figure 7.10: State Space view. The model in Fig. 7.4 is solved for all population levels set to two,

therefore each state has six sequential components. The last column shows the steady-state

probability distribution

from the current state. The tables are laid out similarly to the view’s main table. In

addition, the action types that label a transition are shown in a further column. The

user can navigate backwards and forwards by selecting any of the states listed.

7.3.4 Markovian Analysis and and Graph View

A wizard dialogue box accessible from the top-level menu bar guides the user through

the process of performing steady-state analysis on the Markov chain. The user can

choose between an array of iterative solvers and tune their parameters as needed (see

Fig. 7.13). Performance metrics are calculated automatically and displayed in the Per-

formance Evaluation view. It has three tabs showing the results of the aforementioned

reward structures, i.e., utilisation, throughput, and population levels (see Fig. 7.14).

Throughput and population levels are arranged in a tabular fashion, whereas utilisation

is shown in a two-level tree in which each top-level node corresponds to a sequential

component and its children are its local states.

The Performance Evaluation view can feed input to the Graph view, a general-

purpose view available in the plug-in for visualising charts. Throughputs and pop-

ulation levels are shown as bar charts and a top-level node of the utilisation tree is

shown as a pie chart (see Fig. 7.15). As with any kind of graph displayed in the view,

several converting options are available. The graph can be exported to PDF or SVG and

the underlying data can be extracted into a comma-separated value text file.
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(a) Filter editor (b) Filtered state space

Figure 7.11: State-space filters. (a) In the filter editor the user may choose to display only such

states of the model in Fig. 7.12 that their steady-state probability is greater than 0.03. The

filtered state space and its probability mass are shown in (b)

7.3.5 Experimenting with Markovian Analysis

An important stage in performance modelling is sensitivity analysis, i.e. the study of

the impact that certain parameters have on the performance of the system. A wizard

dialogue box is available in the plug-in to assist the user with the set-up of sensitivity

analysis experiments over the models (see Fig. 7.16). The parameters that can be

subjected to this analysis are the rate definitions and number of replications of the array

of processes in the system equation. The performance metrics that can be analysed are

throughput, utilisation, or population levels. If the model has filter rules defined, the

probability mass of the set of filtered states can be used as a performance index as

well. The tool allows the set-up of multiple experiments of two kinds: one-dimensional

(performance metric vs. one parameter) or two-dimensional (performance metric vs.

two parameters changed simultaneously). The results of the analysis are shown in the

Graph view as line charts.

7.3.6 Differential Analysis

The Differential Analysis view is linked to the active PEPA editor in the workspace and

shows the set of generating functions extracted from the model. These are constructed

automatically but the derivation process may be interrupted by the user should the

differential representation be particularly expensive. Figure 7.17 shows the contents

of the view for the model in Figure 7.4. The generating functions are arranged in a

tabular format. The first column shows the action type, followed by the jump vector of

the function according to the underlying numerical vector format representation. The

last column shows the parametric rate of execution, where the coordinates of the state

descriptor are explicitly indicated using the identifiers of the sequential components
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Figure 7.12: Single-step Navigator displaying the neighbourhood of the initial state of the model

in Fig. 7.4. The elements highlighted in red indicate the sequential components which perform

the action

which they represent. The last two rows indicate the silent activities performed by the

hidden reset cpu and reset db action types.

The top-level menu group Differential Analysis (see Fig. 7.18) gives access to the

user interface for the calculation of the differential performance measures discussed in

Chapter 5: population levels, throughput, capacity utilisation, and average response

time. Each menu item opens a dialogue box for the configuration of the performance

metric, as shown in Fig. 7.19. All dialogue boxes share the same top area, used to set

up the numerical integrator (a fifth-order Range Kutta solver adapted from [119]). The

bottom area is specific to the measure of interest. Population levels, action throughputs,

and capacity utilisations are selected via a checklist. Average response time is config-

ured with a tree viewer, in which each top-level node represents a sequential compo-

nent in the reduced context, and its children are the local states of the component. The

results of the analysis are displayed in the Graph view as time-course trajectories of the
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(a) Solver selection (b) Solver settings

(c) Preconditioner settings

Figure 7.13: Markovian analysis Wizard : (a) First page displaying the list of solvers available;

(b) Solver settings for a generic iterative solver; (c) Settings for the Symmetrical Successive

Over-relaxation preconditioner

performance levels, except for average response time which is reported in a message

box.

7.4 Related Work

Some user interface components of the PEPA Workbench [77], the first Java implemen-

tation of the language, have inspired PEPA Eclipse Plug-in. Since the PEPA Workbench

is no longer maintained, it does not support many of the most recent developments

of the language. A particularly advantageous feature of the PEPA Eclipse Plug-in is its

connection with the Eclipse platform. This has allowed external tools to use the core

services of Pepato in order to carry out PEPA-related tasks in contexts different from

those originally envisaged. For instance, a tool-chain for the steady-state analysis of
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(a) Utilisation (b) Throughput (c) Population

Figure 7.14: The three tabs in the Performance Evaluation view

(a) Bar chart for population levels (b) Pie chart for utilisation

Figure 7.15: Graph view: (a) Example of a bar chart showing the mean population levels of the

components in the steady state; (b) Pie chart for utilisation

PEPA models inputted as text files has been built for the Sensoria Development Envi-

ronment [4,150], a framework based on a loosely-coupled service-oriented architecture

for the integration and orchestration of tools for the modelling, development, and de-

ployment of service-oriented software systems. Pepato is used in conjunction with the

Eclipse implementation of the UML2 meta-model [1] for supporting automatic extrac-

tion of performance models from annotated UML activity diagrams [140] and sequence

diagrams [147]. The programming interface for the Graph View is being used by the

Eclipse Bio-PEPA Plugin [62], which implements a variant of PEPA for the modelling

and analysis of biochemical networks [42]. Pepato’s abstract syntax tree and Marko-

vian analysis packages are used to provide support for stochastic model checking and

aggregation by abstraction [133,134]. Software support for SRMC (the Sensoria Refer-

ence Markovian Calculus [47,48]), an extension of PEPA aimed at modelling large-scale

service-oriented systems, is built on top of the PEPA Eclipse Plug-in [5].

The Imperial PEPA Compiler [26] and its successor, the International PEPA Com-
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(a) (b)

(c) (d)

Figure 7.16: Experimentation: (a) Selection of parameters amenable to sensitivity analysis; (b)

Range set-up; (c) Performance metric set-up; (d) Visualisation of results in the Graph view

piler (ipc, see [44]) provide an orthogonal command-line-based implementation of

PEPA language. The original purpose of this tool was to provide a bridge to the

tools DNAmaca/HYDRA for transient and steady-state analysis of very large Markov

chains [27, 59]. The main difference with respect to the PEPA Eclipse Plug-in is that

ipc enables the computation of passage-time quantiles, i.e., the cumulative distribution

function of the time to traverse a set of states of the Markov chain, particularly useful

for the analysis of response-time measures. The set of states of interest is determined

using the technology of stochastic probes, i.e., observational model components gener-

ated from a regular expression-based specification language [8].

PEPA is also integrated into PRISM for the model checking of the underlying Markov

chain against properties expressed in Continuous Stochastic Logic (CSL) [106]. The
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Figure 7.17: Differential Analysis view

Figure 7.18: Differential Analysis menu in the PEPA Eclipse Plug-in

integration also provides access to the efficient numerical solutions of PRISM based on

binary decision diagrams and sparse matrix representation. PRISM has been applied

successfully to a number of PEPA case studies, e.g., [78,80].
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(a) Population levels (b) Throughput

(c) Capacity utilisation (d) Average response time

Figure 7.19: User interface for the computation of differential performance metrics





Chapter 8

Conclusions

The major contribution of this thesis has been a formal semantic account of the fluid-

flow approximation of PEPA models. Unlike earlier work on this subject, a system of

coupled ordinary differential equations is fully characterised by the generating functions

extracted by interpreting the model against the population-based semantics. Although

this semantics is still Markovian, this thesis has mainly emphasised the scalability prop-

erties of the related deterministic interpretation, highlighting the fundamental insensi-

tivity of the cost of differential analysis with respect to increasing population sizes of

the system under study. The asymptotic results of convergence and the empirical tests

on the accuracy of the approximation have given much confidence on the applicability

of this approach.

8.1 Combined Markovian and Differential Analysis

Clearly, for problems of manageable size the explicit enumeration of the derivative

graph of the model remains the preferred route to performance evaluation, because

the numerical solution of the underlying Markov chain using traditional linear-algebra

techniques is the most precise form of analysis available (except for closed-form solu-

tions which are known only for special and relatively simple cases). Nevertheless, the

increasing computational difficulty in handling large-scale systems does not necessarily

imply that a Markovian approach is not without use even in these circumstances. In

fact, the unique capability of PEPA to address both a discrete and a continuous-state

interpretation may be effectively exploited for a combined and complementary use of

both analysis techniques.

147
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8.1.1 Model Debugging

A possible use of the discrete-state representation of a large-scale system may be for

the purposes of model debugging. This is intended as a form of validation that gives

confidence that the model dynamics matches the modeller’s intended behaviour. For

such a study, the direct use of the differential representation may be counterintuitive

since the evolution of the system is not provided in terms of the intrinsically discrete

representation of the process-algebraic description. Instead, this reasoning may be

carried out more effectively by direct inspection of the derivation graph obtained from

the stochastic semantics. Interestingly, the chain needs not be solved if the modeller is

only interested in qualitative properties of the system.

One of its simplest forms of debugging is the interactive exploration of the deriva-

tion graph using tools such as the Single-step Navigator presented in Section 7.3.3 (cfr.

Fig. 7.12). This tool requires that the complete state space be explored in order to

populate the set of states that have transitions to any given state. However, it is not

difficult to envisage a much less demanding alternative which does not provide this

functionality, restricting itself to showing only the set of reachable states from a given

state. In this manner, the state space needs not be explored in advance, but the tool

would need to compute upon demand only the neighbourhood of the states visited by

the user. Even for large models, the computational cost of this operation is usually

acceptable.

For instance, with respect to the PEPA model of the LQN system proposed in Chap-

ter 6, state-space navigation may be used to verify that whenever a Server thread

carries out an action of type cache, i.e., when it is in the state Cache′1 shown in (6.1),

then one Client thread component must be in a state in which it is waiting for one of

the three synchronous calls to the entry visit. (Using initial concurrency levels such

that explicit enumeration is feasible, this check can be practically carried out by means

of the action- and state-based filters presented in Section 7.3.3.) It must be pointed

out that this approach is informal and necessarily not exhaustive. In practice it is often

beneficial to use model checking techniques to test the validity of logical expressions

which represent the desired properties of correctness of the system under study.

8.1.2 Estimation of Performance Bounds

In addition to the qualitative analysis presented above, the discrete-state representa-

tion of PEPA may be used for the derivation of precise performance bounds. In most

cases, such as all the examples presented in this thesis, the model may be regarded as

a reactive system that performs some computation when triggered by other cooperat-
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Table 8.1: Evaluation of performance bounds for the PEPA model of Chapter 6. The rate pa-

rameters are set as in Figure 6.1 and all other concurrency levels are set to one.

Number of Client threads U(PClient) U(PServer) U(PFileServer)

1 0.052 0.823 0.379

2 0.055 0.864 0.398

3 0.056 0.876 0.404

ing active components. These active components usually capture the behaviour of the

actual users in the real system. When the initial population counts of the active com-

ponents are unitary, the model describes a situation in which there is no contention for

the system’s resources. In these conditions the overall state space is usually of man-

ageable size, therefore the performance estimates can be calculated precisely and can

be interpreted as representing the upper bounds on the performance attainable by the

system. It should be noted that resource contention may still be present in these mod-

els, but it is due to architectural constraints on the reactive modules, e.g., two threads

executing on the same processor. The classification of a sequential component as an

active or a reactive entity is left to the modeller. This information cannot be inferred

automatically from the model description since the semantics of PEPA does not encode

explicitly the role of initiator and receiver of a synchronisation action.

The PEPA interpretation of the LQN model lends itself well to this form of analysis.

Here the modeller can distinguish three classes of components: the active components

are the sequential components which model the Client threads; all the other thread

components are passive, if they service requests from other threads, or active, if they

in turn make requests to other threads and processors. The processor components can

be regarded as being purely passive, in that they only carry out computation when

explicitly acquired by the threads. Therefore, a meaningful derivation of optimistic

performance estimates may be based on the evaluation of the system performance

when there is only one Client thread in the system. Such a study is illustrated in

Table 8.1, which confirms that the utilisation of the processors is indeed the lowest in

that case.

8.1.3 Advantages of Simulation for Analysing Large-Scale Systems

The execution runtimes presented in this thesis refer to sequential implementations of

the ODE solver and the CTMC simulator. Although not studied here, the gap in the com-
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putational efficiency between these two techniques can be dramatically reduced if one

considers alternative implementations designed to run on massively parallel architec-

tures. This is because stochastic simulation is an embarassingly parallelizable problem,

since the independent runs can be run on separate processors and very little coordi-

nation is needed among such runs. One master process is usually required to gather

the simulation results, compute confidence intervals, and determine the convergence

criteria. In this context, a comparison study between the efficiency of parallel versions

of ODE and CTMC analysis would be beneficial and is left as a topic for future work.

Despite its higher computational cost, stochastic simulation is potentially more in-

formative than ODE analysis because it can provide the probability distributions of

the stochastic variables under observation (although this adds to the computational

complexity both in terms of memory and time due to the larger amount of data that is

needed). This more detailed information can be desired in later stages of the modelling

process when a more informative characterisation of the system is required.

8.1.4 A Modelling Workflow for PEPA Population Models

In conclusion, one can devise the following modelling workflow for large-scale pop-

ulation models which encompasses all of the forms of analysis to which PEPA can be

subjected:

1. Model development Definition of the system components and the synchronisation

sets among them. This stage can be assisted by static analysis to search for com-

mon modelling mistakes. In some cases deadlock detection may be conducted

prior to state-space exploration [58].

2. Qualitative analysis Study of the functional characteristics of the model, allowing

for the detection of problems that cannot be discovered statically. Informal ap-

proaches include running state- and action-based filters over the state space (if

explicit enumeration is feasible) and interactive simulation of execution traces.

More formally, model checking techniques can be employed.

3. Evaluation of performance bounds If the performance estimates are to be com-

pared against given quality-of-service agreements, evaluating optimistic perfor-

mance bounds may be used to reject models that do not meet such prerequisites

even under the most optimistic conditions of no contention from users for the

system’s resources.

4. Large-scale analysis with ODEs The low computational cost of differential analy-

sis makes it particularly suitable for the investigation of problems that involve the
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exploration of large parameter spaces. Instances of such problems include sen-

sitivity analysis, e.g., studying the impact that changes to parameter values have

on the system performance, and optimisation, e.g., finding the optimal system

configuration that minimises a given cost function.

5. Refinement with stochastic simulation Once enough confidence on the correct-

ness of the model is built, stochastic simulation may be employed for a detailed

characterisation of the system, e.g., the computation of higher moment statistics.

8.2 Future Work

Although the deterministic interpretation of PEPA proposed in this thesis has extended

the scope of applicability of ODE analysis of earlier approaches, there are still a number

of modelling situations of practical interest which cannot be described satisfactorily

with PEPA. This section discusses a few topics of future work with this respect.

Synchronisation among isomorphic components

A PEPA model whose reduced context features synchronisation between identical com-

ponents in the form A BC
L1

A · · · BC
Lk

A, for non-empty synchronisation sets L1,L2, . . . ,Lk, can

be theoretically subjected to fluid-flow interpretation. However, the resulting popula-

tion model is not meaningful because it does not correctly capture the actual behaviour

of the system in the large scale. In particular, the associated population model would

be in the form A[N1] BC
L1

A[N2] · · · BC
Lk

A[Nk+1], i.e., it is such that the overall population of

components A results partitioned in groups of components within which communica-

tion is not possible (because the components are composed in parallel with empty coop-

eration sets). Further research is needed in this area because communication between

identical components is a reasonable modelling abstraction to study the behaviour of

several interesting (and complex) distributed systems, e.g., peer-to-peer networks and

other similar communication protocols.

Modelling user workload

As shown in the examples provided throughout this thesis, the performance evaluation

of a system may be conducted under the assumption of a special class of user behaviour

specification, namely that of a closed workload in which a (fixed) population of users

are assumed to cyclically interact with the system, possibly interposing some think

time between successive requests. This is a consequence of the two-level grammar for

PEPA, which prohibits definitions in the form A
def= (born,r).(A ‖ A′) which could provide
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a simple description of a component that spawns new processes. In particular, this

would model a Poisson workload of users of type A′ with exponentially distributed

interarrival times (with rate r), a common assumption in many performance modelling

studies.

Multiscale models

The treatment of the LQN model developed in Chapter 6 has highlighted the presence

of distinct activities occurring at rates which are separated by many orders of magni-

tude. One recurring case is the use of very fast activities to enforce exclusive access to

processors and to model the passing of the locus of control from one software thread

to another. Such multiscale behaviour is not exclusive to those models that translate

queueing networks, but it manifests itself in general when there are activities which

denote purely logical operations or whose duration is negligible (e.g., context switch

in multitasking processors), as well as others which carry significant delays (e.g., net-

work data transfer). Although such models do not present difficulties from a theoretical

standpoint, as observed in Chapter 6 they may give rise to numerical problems because

of stiffness. A possible way of tackling this problem would be to develop alternative

(perhaps approximate) versions of the model in which the behaviour of fast activities

is not expressed directly with a specific action but is instead incorporated in activi-

ties whose rates are of a similar order of magnitude. It should be noted however that

the solution of stiff problems would greatly benefit from using numerical integrators

specifically designed to handle such cases (e.g., implicit methods [86]). The implemen-

tation of these solvers within the PEPA Eclipse Plug-in, which currently supports only an

explicit Dormand-Prince integrator, is the subject of future work.
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Differential Equations of Case Studies

A.1 Case Study of Section 4.4

The model is reported again in Figure A.1 for convenience; alongside each sequential

component is the corresponding coordinate in the NVF.

dx1(t)
dt

=−min(rc:requestx1(t),rs:requestx4(t))+ rc:thinkx3(t)

dx2(t)
dt

= min(rc:requestx1(t),rs:requestx4(t))−min(rc:replyx2(t),rs:replyx8(t))

dx3(t)
dt

=−rc:thinkx3(t)+min(rc:replyx2(t),rs:replyx8(t))

dx4(t)
dt

=−min(rc:requestx1(t),rs:requestx4(t))− rs:failx4(t)+min(rc:replyx2(t),rs:replyx8(t))

+
rs:readx9(t)

rs:readx9(t)+ rs:readx5(t)
min(rs:readx9(t)+ rs:readx5(t),rd:readx10(t))

dx5(t)
dt

=− rs:readx5(t)
rs:readx9(t)+ rs:readx5(t)

min(rs:readx9(t)+ rs:readx5(t),rd:readx10(t))

+pfresh min(rc:requestx1(t),rs:requestx4(t))

dx6(t)
dt

= (1−pok)
rs:readx5(t)

rs:readx9(t)+ rs:readx5(t)
min(rs:readx9(t)+ rs:readx5(t),rd:readx10(t))

−rs:forcex6(t)

dx7(t)
dt

=− rs:writex7(t)
rs:writex7(t)+ rr:writex13(t)

min(rs:writex7(t)+ rr:writex13(t),rd:writex10(t))

+ rs:forcex6(t)

dx8(t)
dt

=−min(rc:replyx2(t),rs:replyx8(t))+(1−pfresh)min(rc:requestx1(t),rs:requestx4(t))

+pok
rs:readx5(t)

rs:readx9(t)+ rs:readx5(t)
min(rs:readx9(t)+ rs:readx5(t),rd:readx10(t))

+
rs:writex7(t)

rs:writex7(t)+ rr:writex13(t)
min(rs:writex7(t)+ rr:writex13(t),rd:writex10(t))
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ξ1 Cl :Request
def= (request,rc:request).Cl :Wait

ξ2 Cl :Wait
def= (reply,rc:reply).Cl :Think

ξ3 Cl :Think
def= (think,rc:think).Cl :Request

ξ4 Sr :Wait
def= (request,pfreshrs:request).Sr :Fresh

+ (request,(1−pfresh)rs:request).Sr :Reply

+ (fail,rs:fail).Sr :Repair

ξ5 Sr :Fresh
def= (read,pokrs:read).Sr :Reply

+ (read,(1−pok)rs:read).Sr :Force

ξ6 Sr :Force
def= (force,rs:force).Sr :Write

ξ7 Sr :Write
def= (write,rs:write).Sr :Reply

ξ8 Sr :Reply
def= (reply,rs:reply).Sr :Wait

ξ9 Sr :Repair
def= (read,rs:read).Sr :Wait

ξ10 Db :Wait
def= (read,rd:read).Db :Update

+ (write,rd:write).Db :Update

ξ11 Db :Update
def= (update,rd:update).Db :Wait

ξ12 Rb :Gather
def= (crawl,rr:crawl).Rb :Write

ξ13 Rb :Write
def= (write,rr:write).Rb :Gather

SystemApp
def= Cl :Request[Nc] BC

{request,reply}((
Sr :Wait[Ns] ‖ Rb :Gather[Nr]

)
BC

{read,write}

Db :Wait[Nd ]
)
/{read,write}

Figure A.1: PEPA model of a three-tier distributed application

dx9(t)
dt

=− rs:readx9(t)
rs:readx9(t)+ rs:readx5(t)

min(rs:readx9(t)+ rs:readx5(t),rd:readx10(t))

+min(rc:replyx2(t),rs:replyx8(t))

dx10(t)
dt

= rd:updatex11(t)−min(rs:readx9(t)+ rs:readx5(t),rd:readx10(t))

−min(rs:writex7(t)+ rr:writex13(t),rd:writex10(t))

dx11(t)
dt

=−rd:updatex11(t)+min(rs:readx9(t)+ rs:readx5(t),rd:readx10(t))

+min(rs:writex7(t)+ rr:writex13(t),rd:writex10(t))

dx12(t)
dt

=−rr:crawlx12(t)

+
rr:writex13(t)

rs:writex7(t)+ rr:writex13(t)
min(rs:writex7(t)+ rr:writex13(t),rd:writex10(t))

dx13(t)
dt

= rr:crawlx12(t)

− rr:writex13(t)
rs:writex7(t)+ rr:writex13(t)

min(rs:writex7(t)+ rr:writex13(t),rd:writex10(t))
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A.2 Case Study of Section 5.6.3

dx1(t)
dt

=−t1x1(t)+
c1x2(t)

c1x2(t)+ c2x6(t)
min(c1x2(t)+ c2x6(t),cx8(t))

+
d1c1x3(t)

d1c1x3(t)+d2c2x7(t)
min(d1c1x3(t)+d2c2x7(t),dx10(t))

dx2(t)
dt

= t′1x4(t)+(1−p)p′db t1x1(t)−
c1x2(t)

c1x2(t)+ c2x6(t)
min(c1x2(t)+ c2x6(t),cx8(t))

dx3(t)
dt

= (1−p)pdb t1x1(t)−
d1c1x3(t)

d1c1x3(t)+d2c2x7(t)
min(d1c1x3(t)+d2c2x7(t),dx10(t))

dx4(t)
dt

= pt1x1(t)− t′1x4(t)

dx5(t)
dt

=−t2x5(t)+
c2x6(t)

c1x2(t)+ c2x6(t)
min(c1x2(t)+ c2x6(t),cx8(t))

+
d2c2x7(t)

d1c1x3(t)+d2c2x7(t)
min(d1c1x3(t)+d2c2x7(t),dx10(t))

dx6(t)
dt

= q′db t2x5(t)−
c2x6(t)

c1x2(t)+ c2x6(t)
min(c1x2(t)+ c2x6(t),cx8(t))

dx7(t)
dt

= qdb t2x5(t)−
d2c2x7(t)

d1c1x3(t)+d2c2x7(t)
min(d1c1x3(t)+d2c2x7(t),dx10(t))

dx8(t)
dt

=−min(c1x2(t)+ c2x6(t),cx8(t))+
lcx9(t)

lcx9(t)+ ldx10(t)
min(lcx9(t)+ ldx10(t), lx12(t))

dx9(t)
dt

= min(c1x2(t)+ c2x6(t),cx8(t))−
lcx9(t)

lcx9(t)+ ldx10(t)
min(lcx9(t)+ ldx10(t), lx12(t))

dx10(t)
dt

=−min(d1c1x3(t)+d2c2x7(t),dx10(t))

+
ldx10(t)

lcx9(t)+ ldx10(t)
min(lcx9(t)+ ldx10(t), lx12(t))

dx11(t)
dt

= min(d1c1x3(t)−d2c2x7(t),dx10(t))

− ldx10(t)
lcx9(t)+ ldx10(t)

min(lcx9(t)+ ldx10(t), lx12(t))

dx12(t)
dt

= 0





Appendix B

Complete PEPA Model of Chapter 6

CLIENT (REFERENCE TASK)

Client1
def= (acquirepc,ν).(think,8/0.01).Client2

Client2
def= (requestthink,visit,ν).(replythink,visit,ν).(acquirepc,ν).(think,8/0.01).Client3

Client3
def= (requestthink,visit,ν).(replythink,visit,ν).(acquirepc,ν).(think,8/0.01).Client4

Client4
def= (requestthink,visit,ν).(replythink,visit,ν).(acquirepc,ν).(think,8/0.01).Client5

Client5
def= (requestthink,buy,ν).(replythink,buy,ν).(acquirepc,ν).(think,8/0.01).Client6

Client6
def= (requestthink,notify,ν).(acquirepc,ν).(think,8/0.01).Client7

Client8
def= (requestthink,save,ν).(replythink,save,ν).(acquirepc,ν).(think,8/0.01).Client9

Client9
def= (requestthink,read,ν).(replythink,read,ν).(acquirepc,ν).(think,8/0.01).Client1

SERVER

Server
def= (requestthink,visit,ν).Cache1 +(requestthink,buy,ν).Prepare1

+(requestthink,notify,ν).Notify1 +(requestthink,save,ν).Save1

Cache1
def= (acquireps,ν).

[
(cache,0.95×1/0.001).Internal1 +(cache,0.05×1/0.001).External1

]
Internal1

def= (acquireps,ν).(internal,1/0.001).Internal2

Internal2
def= (replythink,visit,ν).EndInternal

EndInternal
def= Server

External1
def= (acquireps,ν).(external,2/0.001).External2

External2
def= (requestexternal,read,ν).(replyexternal,read,ν).(acquireps,ν).(external,2/0.001).External3

External3
def= (replythink,visit,ν).EndExternal

EndExternal
def= Server
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Prepare1
def= (acquireps,ν).(prepare,1/0.01).ForkPrepare

ForkPrepare
def= (fork1,ν).EndPrepare

EndPrepare
def= (join1,ν).Display1

Display1
def= (acquireps,ν).(display,1/0.001).Display2

Display2
def= (replythink,buy,ν).EndDisplay

EndDisplay
def= Server

Notify1
def= (acquireps,ν).(notify,1/0.08).EndNotify

EndNotify
def= Server

Save1
def= (acquireps,ν).(save,2/0.02).Save2

Save2
def= (requestsave,write,ν).(replysave,write,ν).(acquireps,ν).(save,2/0.02).Save3

Save3
def= (replythink,save,ν).EndSave

EndSave
def= Server

SERVER’S SECONDARY FLOWS

Pack1
def= (fork1,ν).(acquireps,ν).(pack,1/0.03).EndPack

EndPack
def= (join1,ν).Pack1

Ship1
def= (fork1,ν).(acquireps,ν).(ship,1/0.01).EndShip

EndShip
def= (join1,ν).Ship1

FILESERVER

FileServer
def= (requestthink,read,ν).Read1

+(requestexternal,read,ν).Read1

+(requestsave,write1 ,ν).Write′1

Read1
def= (acquirepfs,ν).(read,1/0.01).Read2

Read2
def= (replythink,read,ν).EndRead +(replyexternal,read,ν).EndRead

EndRead
def= FileServer

Write′1
def= (acquirepfs,ν).(write1,1/0.001).Write′2

Write′2
def= (replysave,write1 ,ν).EndWrite′

EndWrite′
def= Write′′1

Write′′1
def= (acquirepfs,ν).(write2,3/0.04).Write′′2

Write′′2
def= (requestwrite2,get,ν).(replywrite2,get,ν).(acquirepfs,ν).(write2,3/0.04).Write′′3

Write′′3
def= (requestwrite2,update,ν).(replywrite2,update,ν).(acquirepfs,ν).(write2,3/0.04).EndWrite′′

EndWrite′′
def= FileServer
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BACKUP

Backup
def= (requestwrite2,get,ν).Get1

+(requestwrite2,update,ν).Update1

Get1
def= (acquirepfs,ν).(get,1/0.01).Get2

Get2
def= (replywrite2,get,ν).EndGet

EndGet
def= Backup

Update1
def= (acquirepfs,ν).(update,1/0.01).Update2

Update2
def= (replywrite2,update,ν).EndUpdate

EndUpdate
def= Backup

PCLIENT

PClient′
def= (acquirepc,ν).PClient′′

PClient′′
def= (think,8/0.01).PClient′

PSERVER

PServer′
def= (acquireps,ν).PServer′′

PServer′′
def= (cache,1/0.001).PServer′+(internal,1/0.001).PServer′

+(external,2/0.001).PServer′+(prepare,1/0.01).PServer′

+(pack,1/0.03).PServer′+(ship,1/0.01).PServer′+(display,1/0.001).PServer′

PFILESERVER: (cfr. Figure 6.3)

COMPLETE LAYERED QUEUEING NETWORK(
Client[2] BC

M1

(
Server[2] BC

L1
Pack1[2] BC

L2
Ship1[2]

)
BC
M2

FileServer[1] BC
M3

Backup[1]
)

BC
M4

(
PClient[2] BC

/0
PServer[2] BC

/0
PFileServer[2]

)
,

M1 =
{

requestthink,visit,replythink,visitrequestthink,buy,replythink,buy,requestthink,notify,

requestthink,save,replythink,save
}

L1 = L2 =
{

fork1, join1
}

M2 =
{

requestthink,read,replythink,read,requestexternal,readreplyexternal,read,

requestsave,write1 ,replysave,write1

}
M3 =

{
requestwrite2,get,replywrite2,get,requestwrite2,update,

replywrite2,update
}

M4 =
{

acquirepc, think,acquireps,cache, internal,external,

prepare,pack,ship,display,notify,display,acquirepfs,

read,write,get,update
}
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